\qquad

Exponential Functions: Different Types of Equations

1) Complete the table and graph the function $y=2^{x}$.

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

2) Complete the table, then graph the function $y=2^{x}+2$ on the same coordinate plane:

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

3) Without making a table, draw in your prediction of what you think the graph of the function $f(x)=2^{x}-3$ would look like.

4) Complete the table and graph the function $y=3^{x}$.

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}					

5) Complete the table, then graph the function $y=3^{x-2}$ on the same coordinate plane:

\mathbf{x}	-1	0	1	2	3	4
\mathbf{y}						

6) Without making a table, draw in your prediction of what you think the graph of the function $y=3^{x+4}$ would look like.

7) a. Suppose the graph below right represents $y=4^{x}$. On the same coordinate plane, draw what you think the graph of $y=3 \cdot 4^{x}$ would look like. Label this graph "a".
b. On the same coordinate plane, draw what you think the graph of $y=\frac{1}{10} \cdot 4^{x}$ would look like. Label this graph "b".
c. On the same coordinate plane, draw what you think the graph of $y=-1 \cdot 4^{x}$ would look like. Label this graph " c ".
8) (challenge) Explain, in words, how you think the graph of $y=2 \cdot 5^{x-3}+7$ would be different than the graph of $y=5^{x}$.
