Warmup 2/(\#of faces on a cube)

।. Find the measures of all marked angles in the diagram. Label the angles as shown in the box.

Created by Mr. Lischwe

Warmup 2/(\#of faces on a cube)

।. Find the measures of all marked angles in the diagram.

UPDATE:

- The Angles Quiz will now be Monday.

Check HW

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. I Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)
p. 4 Zero \& Negative Exponents (I.5)
p. 5 Scientific Notation (1.6)
p. 6 Calcluating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines (5.I)

Angles formed by Parallel Lines

Objectives:

- Given one angle measure, find ALL angles formed by 2 parallel lines
- Identify special angle pairs
- Use special angle pair rules to find angle measures

- How many angles are there?

DISCUSS WITHYOUR GROUP:

- The red arrows mean that lines m and n are parallel. Suppose I give you the measure of angle I. In your group, discuss the following question: how many OTHER angle measures, in addition to angle I, is it possible to find? For the ones that are possible, how would you find them?
- I will call on random people to share what their group discussed.

If I know the measure of angle I, how many more angle measures can I find? How?

- Two angles that are in the same "position" but on different lines are called corresponding.

- If the lines are parallel, these angles will be congruent!!!

COPY the diagram!!!!

- One angle measure is given. Find the measures of ALL other angles.

$$
\begin{gathered}
m \angle 1=145^{\circ} \\
m \angle 2=35^{\circ} \\
m \angle 3=145^{\circ} \\
m \angle 4=145^{\circ} \\
m \angle 5=35^{\circ} \\
m \angle 6=35^{\circ} \\
m \angle 7=145^{\circ}
\end{gathered}
$$

- One angle measure is given. On your whiteboard, find the measures of ALL other angles.

$$
\begin{aligned}
& m \angle 1=\mathbf{8 2}^{\circ} \\
& m \angle 2=\mathbf{9 8}^{\circ} \\
& m \angle 3=\mathbf{8 2}^{\circ} \\
& m \angle 4=\mathbf{9 8}^{\circ} \\
& m \angle 5=\mathbf{9 8}^{\circ} \\
& m \angle 6=\mathbf{8 2}^{\circ} \\
& m \angle 7=\mathbf{8 2}^{\circ}
\end{aligned}
$$

