

Sequences and Functions

- A sequence is a list of numbers in a specific order.
- Each element in a sequence is called aterm
- Each term has a position number
term in the fourth
$7,9,11,13,15,17,19,21,23, \ldots$
* term in the first
position

Ok...but what is an arithmetic sequence?

- Arithmetic Sequence: When the terms in the sequence have a common difference (d)
(Basically, a sequence that is linear)
- Can you give an example of an arithmetic sequence?

Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms.

$$
\mathbf{1 0}, \mathbf{8}, 5,1, \ldots
$$

[^0]Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms.

$$
-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \ldots
$$

common difference: $2 / 4$ or $1 / 2$
next three terms: $5 / 4,7 / 4,9 / 4$

Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms.

$$
-4,-2,1,5, \ldots
$$

no common difference between terms

Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms.

$$
\frac{2}{3}, \frac{1}{3},-\frac{1}{3},-\frac{2}{3}, \ldots
$$

no common difference between terms

Sequence Notation
- We often use the letter "a" with a subscript to label terms of a sequence $\cdot \mathbf{a}_{1}=\mathbf{1}^{\text {st }}$ term $\cdot \mathbf{a}_{13}=\mathbf{1 3}^{\text {th }}$ term $\cdot \mathbf{a n n}_{\text {n }}=\mathbf{n}^{\text {th }}$ term

Find the indicated term of the arithmetic sequence.

Find $a_{25}: a_{1}=-5 ; d=-2$

- Let's say my sequence is $7,11,15,19, \ldots$
- The first term is 7 , and the common difference is 4 .
- Suppose I am trying to find the $3^{\text {rd }}$ term.
- If the $1^{\text {st }}$ term is 7 , how many more "fours" would I have to add to get the $3^{\text {rd }}$ term?
- How many fours would I have to add to 7 to get the $10^{\text {th }}$ term?
- How many fours would I have to add to 7 to get the $47^{\text {th }}$ term?
- To get the nth term, you must add the common difference $(n-1)$ times.

Find the indicated term of the arithmetic sequence.

The 8th term: $a_{1}=11 ; d=3$

32

Find the indicated term of the arithmetic sequence.

12th term: $a_{1}=4.2 ; d=1.4$
19.6

If we start with 3 and we add two each time to create a sequence of numbers, what would the $25^{\text {th }}$ term be?

Let's make a chart and see if we can find a pattern...

Words	Numbers	Algebra
1st term	3	a_{1}
2nd term	$3+(1) 2=5$	$a_{1}+1 d$
3nd term	$3+(2) 2=7$	$a_{1}+2 d$
4th term	$3+(3) 2=9$	$a_{1}+3 d$
\vdots	\vdots	\vdots
nth term	$3+(n-1) 2$	$a_{1}+(n-1) d$

Explicit Formula for Arithmetic Sequences:
$a_{n}=a_{1}+\mathrm{d}(\mathrm{n}-1)$

- a_{1} is the first term
- d is the common difference
- n is the position number

Homework
$1 / 2$ SHEET
$10,8,6,4, \ldots$

$$
a_{n}=10-2(\mathrm{n}-1)
$$

[^0]: no common difference between terms

