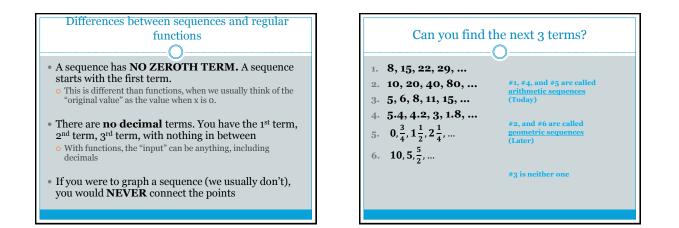
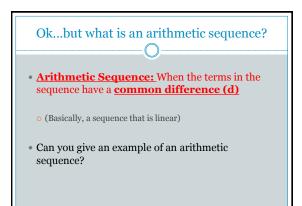
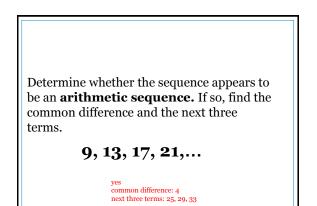

in pattern # #1, #2, and 2) If "n" is the	#43. (The patterns #3)	nowflakes would be shown are pattern write an equation to uld be in pattern
ağı.	191 191	






	Table of Contents		
p. 8	Rate of Change		
p. 9	Slope		
p. 10	Slope-Intercept Form		
p. 11	Standard Form		
p. 12	Point-Slope Form		
p.13	Solving Linear Inequalities		
p. 14	Negative Exponents, Multiplying & Dividing Powers		
p. 15	Power to a Power		
p. 16	Which Would You Choose?		
p. 17	Exponential Equations		
p. 18	Exponential GRAPHS		
p. 19	Real-World Exponential Functions		
p. 20 p. 21	Compound Interest Arithmetic Sequences		

Determine whether the sequence appears to be an **arithmetic sequence.** If so, find the common difference and the next three terms.

no common difference between

10, 8, 5, 1,...

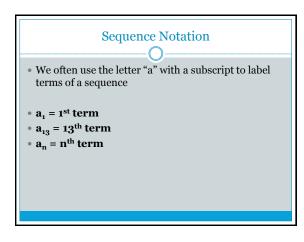
terms

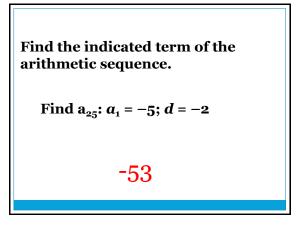
Determine whether the sequence appears to be an **arithmetic sequence.** If so, find the common difference and the next three terms.

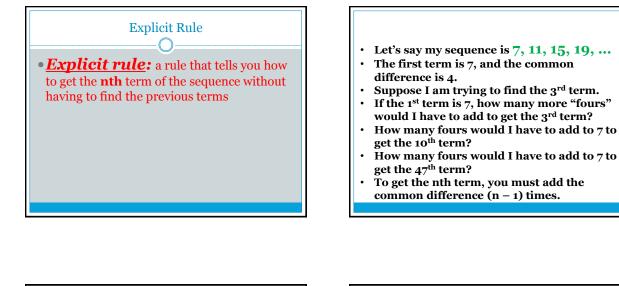
Determine whether the sequence appears to be an **arithmetic sequence.** If so, find the common difference and the next three terms. $-\frac{3}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4}...$

> common difference: 2/4 or 1/2 next three terms: 5/4, 7/4, 9/4

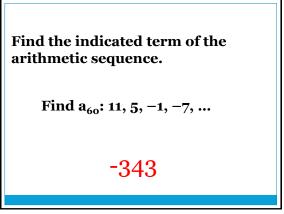
Determine whether the sequence appears to be an **arithmetic sequence.** If so, find the common difference and the next three terms.


no common difference between


-4, -2, 1, 5, ...


terms

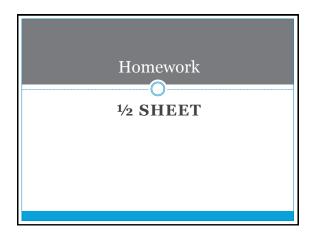
```
Determine whether the sequence appears to
be an arithmetic sequence. If so, find the
common difference and the next three
terms.
\frac{2}{3}, \frac{1}{3}, -\frac{1}{3}, -\frac{2}{3}, \dots
```


Find the indicated term of the arithmetic sequence. 16th term: 4, 8, 12, 16, ... 64

Find the indicated term of the arithmetic sequence. The 8th term: $a_1 = 11$; d = 332

Find the indicated term of the arithmetic sequence. 12th term: $a_1 = 4.2$; d = 1.419.6 If we start with 3 and we add two each time to create a sequence of numbers, what would the 25th term be?

Let's make a chart and see if we can find a pattern...


Words	Numbers	Algebra
1st term	3	a ₁
2nd term	3 + (1)2 = 5	a ₁ + 1d
3nd term	3 + (2)2 = 7	a ₁ + 2d
4th term	3 + (3)2 = 9	a ₁ + 3d
:		:
n th term	3 + (n – 1)2	$a_1 + (n - 1)d$

Explicit Formula for Arithmetic Sequences: $a_n = a_1 + d(n - 1)$

- a₁ is the first term
 d is the common difference
 n is the position number

Write the Explicit Formula for the Sequence 9, 13, 17, 21,... $a_n = 9 + 4(n - 1)$

Write the Explicit Formula for the Sequence 10, 8, 6, 4,... $a_n = 10 - 2(n-1)$

