Created by Mr. Lischwe

• Decide whether each value is rational or irrational, and explain why.

1) $\sqrt{20}$ Invational

2) 0.343434 ... Rational

3) 6.7128334952 ... Irrational

 $4)\frac{17}{13}$ Rational

p. 57 (24-26)

24) Hydrogen, Carbon, Oxygen, Silver, Gold
25) 2.2 x 10³; 310,000; 3.1 x 10⁷; 216,000,000
26) 4.56 x 10⁻³, 4.56 x 10⁻², 4.56 x 10², 4.56 x 10³

Table of Contents (2nd Semester)

- p. 1 Exponent Basics (1.2)
- p. 2 Zero and Negative Exponents (1.5)
- p. 3 Multiplying and Dividing Powers (1.3)
- p. 4 Power to a Power (1.4)
- p. 5 Scientific Notation (1.6)
- p. 6 Calculating with Scientific Notation (1.7)

Calculating with Scientific Notation

Objective:

Add, subtract, multiply, and divide numbers in scientific notation WITHOUT THE USE OF A CALCULATOR

6

• Use these two numbers: $4 \times 10^5 \text{ and } 2 \times 10^2$

<u>PREDICT (Individually - write down your</u> <u>predictions somewhere):</u>

- 1) $(4 \times 10^5) \cdot (2 \times 10^2)$ will be: $\times 10^{\Box}$
- 2) $(4 \times 10^5) \div (2 \times 10^2)$ will be: $\times 10^{\square}$
- 3) $(4 \times 10^5) + (2 \times 10^2)$ will be: $\times 10^{\square}$
- 4) $(4 \times 10^5) (2 \times 10^2)$ will be: $\times 10^{\square}$

GROUP TASK (GIANT WHITEBOARD -ONE PER GROUP)

• Use these two numbers: 4×10^5 and 2×10^2

YOUR JOB:

- 1) Convert both numbers into standard notation.
- 2) Multiply the numbers.
- 3) Divide the numbers.
- 4) Add the numbers.
- 5) Subtract the numbers.
- 6) Convert each answer back into scientific notation. Then compare these answers with the original numbers. Which of your predictions were correct? What patterns do you notice?

EXPANDING OUT SCIENTIFIC NOTATION...

1) $(4 \times 10^5) \cdot (2 \times 10^2)$ = $(4 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10) \cdot (2 \cdot 10 \cdot 10)$ = 8×10^7

2)
$$(4 \times 10^5) \div (2 \times 10^2)$$

= $\frac{(4 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10)}{(2 \cdot 10 \cdot 10)}$
= 2×10^3

EXPANDING OUT SCIENTIFIC NOTATION...

 $(4 \times 10^5) + (2 \times 10^2)$ $(4 \times 10^5) - (2 \times 10^2)$

 $(4 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10) + (2 \cdot 10 \cdot 10)$ $(4 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10) - (2 \cdot 10 \cdot 10)$

Not like terms, cannot combine, must calculate separately!

WITH VARIABLES

- 1. $a^6 \cdot a^2$ a^6
- 2. $\frac{a^6}{a^2}$
- 3. $a^6 + a^2$
- 4. $a^6 a^2$
 - $\frac{(a \cdot a \cdot a \cdot a \cdot a \cdot a) \cdot (a \cdot a)}{\frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a}} = a^{4}$

 $(a \cdot a \cdot a \cdot a \cdot a \cdot a) + (a \cdot a)$: No way to simplify this $(a \cdot a \cdot a \cdot a \cdot a \cdot a) - (a \cdot a)$: No way to simplify this

WITH COEFFICIENTS...

1. $5x^2 \cdot 3x^4 = 15x^6$

 $2. \quad \frac{12y^6}{4y^2} \qquad \qquad = 3y^4$

SCIENTIFIC NOTATION: SAME RULES AS OTHER EXPONENT PROBLEMS!!! $(4 \times 10^3)(2 \times 10^4)$

 $= (4 \times 10 \times 10 \times 10)(2 \times 10 \times 10 \times 10 \times 10)$

$= 8 \times 10^{7}$

Multiplying in Scientific Notation

- Multiply the Coefficients
- Keep the base (10)
- Add the exponents!

SCIENTIFIC NOTATION: SAME RULES AS OTHER EXPONENT PROBLEMS!!!

 $\frac{9\times10^5}{3\times10^2}$

9×10×10×10×10×10

 $3 \times 10 \times 10$

 $= 3 \times 10^{3}$

Dividing in Scientific Notation

- Divide the Coefficients
- Keep the base (10)
- Subtract the exponents!

Adding & Subtracting in Scientific Notation
 No shortcut: convert both to standard notation, then add or subtract

(There is an exception to this rule - there IS a shortcut sometimes. When do you think that is?)

You cannot combine these: $4x^3 + 7x^2$

However, you <u>can</u> combine these: $4x^{5} + 7x^{5}$ $= 11x^{5}$

If the exponents are the same, you <u>can</u> use a shortcut for adding/subtracting scientific notation. (Think of them as "combining like terms")

 $(6 \times 10^7) + (2 \times 10^7)$ = 8×10⁷

In this scenario ONLY, the 6 and the 2 digits WOULD line up!

 $(6 \times 10^{7}) + (2 \times 10^{7})$ $\begin{array}{r} 60,000,000 \\ +20,000,000 \\ \hline 80,000,000 \\ \hline = 8 \times 10^{7} \end{array}$

Adding & Subtracting in Scientific Notation

 No shortcut: convert both to standard notation, then add or subtract

• EXCEPTION: IF EXPONENTS ARE THE SAME

- Add/subtract coefficients
- Keep the base AND keep the exponent

OVERALL MAIN IDEA IN MATH...You can multiply or divide anything.

• However, you can only add or subtract things that are <u>like terms</u>.

- Fractions work this way.
- Calculating with variables works this way.
- Scientific notation also works this way!

WRITE YOUR ANSWER IN SCIENTIFIC NOTATION. **Examples** 23000 $(7.4 \times 10^{9})(1.2 \times 10^{-3})$ 6500 1. 129500 $(6.5 \times 10^3) + (1.23 \times 10^5)$ 2. 8.8 8 9.72×10⁸¹ 3. 2.7×10⁷⁷ 2.7)9.72 $(9 \times 10^5) - (2.5 \times 10^2)$ 27/97.2 81 37 62 <u>8|</u> [62 1. 8.88×10⁶

\$99750

- **2.** 1.295×10^5
- **3.** 3.6×10^4
- **4.** 8. 9975 × 10⁵

p.63 (1, 2, 4, 8) and
p.65 (19, 21, 22)

No calculator allowed! NO WORK SHOWN = NO CREDIT!