Created by Mr. Lischwe

WARMUP $1 /\left(1.4 \times \mathbf{1 0}^{\mathbf{1}}\right)\left(\mathbf{2} \times \mathbf{1 0}^{\mathbf{0}}\right)$ EVERYONE NEEDS A WHITEBOARD, MARKER, ERASER!!!

For each problem, fill in your own x and y values to make a table that is:

1) Not a function

2) Linear, but not proportional

| x | | | |
| :--- | :--- | :--- | :--- | :--- |

5) Equation for \#3:
6) A function, but nonlinear

X
y
4) Proportional

x				
y				

6) Equation for \#4:

REMINDER:

$$
\begin{gathered}
\left(4 \times 10^{3}\right)\left(2 \times 10^{4}\right) \\
=(4 \times 10 \times 10 \times 10)(2 \times 10 \times 10 \times 10 \times 10) \\
=8 \times 10^{7}
\end{gathered}
$$

Multiplying in Scientific Notation

- Multiply the Coefficients
- Keep the base (10)
- Add the exponents!

REMINDER:

$$
\begin{gathered}
\frac{9 \times 10^{5}}{3 \times 10^{2}} \\
=\frac{9 \times 10 \times 10 \times 10 \times 10 \times 10}{3 \times 10 \times 10} \\
=3 \times 10^{3}
\end{gathered}
$$

Dividing in Scientific Notation

- Divide the Coefficients
- Keep the base (10)
- Subtract the exponents!

REMMMNDER:
Adding \& Subtracting in Scientific Notation
○ No shortcut: convert both to standard notation, then add or subtract
(Exception: When both numbers have the same exponent!)

Adding \& Subtracting in Scientific Notation

- No shortcut: convert both to standard notation, then add or subtract
○ IF EXPONENTS ARE THE SAME:
- Add/subtract coefficients
- Keep the base AND keep the exponent

OVERALL MANN IDEA IN MATH....
○You can multiply or divide anything.
-However, you can only add or subtract things that are like terms.

- Fractions work this way.
- Calculating with variables works this way.
- Scientific notation also works this way!

TRY THESE:

WRITE YOUR ANSWER IN SCIENTIFIC NOTATION. Examples

1. $\left(7.4 \times 10^{9}\right)\left(1.2 \times 10^{-3}\right)$
2. $\left(6.5 \times 10^{3}\right)+\left(1.23 \times 10^{5}\right)$
3. $\frac{9.72 \times 10^{81}}{2.7 \times 10^{77}}$
4. $\left(9 \times 10^{5}\right)-\left(2.5 \times 10^{2}\right)$
5. 8.88×10^{6}
6. 1.295×10^{5}
7. 3.6×10^{4}
8. 8.9975×10^{5}

WHO REMEMBERS...

How to turn this into scientific notation?

THE BOOK'S METHOD OF

 ADDING/SUBTRACTING:Strategy 1:
Change both to 4 exponent
$\left(4.56 \times 10^{6}\right)+\left(7 \times \mathbf{1 0}^{4}\right)$
$\left(45.6 \times 10^{5}\right)+\left(\mathbf{7 \times 1 0 ^ { 4 }}\right)$
$\left(456 \times \mathbf{1 0}^{4}\right)+\left(\mathbf{7} \times \mathbf{1 0}^{4}\right)$
$=\left(463 \times 10^{4}\right)$
$=\left(4.63 \times 10^{6}\right)$
(This is the one the book teaches - feel free to use it, but I have found students mess it up more)
$\left(4.56 \times 10^{6}\right)+\left(7 \times 10^{4}\right)$
$\left(4.56 \times 10^{6}\right)+\left(.7 \times 10^{5}\right)$

Strategy 2:
Change both to 6 exponent
$=\left(4.63 \times 10^{6}\right)$

ON A WHITEBOARD, SOLVE BOTH

 WAYS:A) By converting to standard form and using long division
B) By using the shortcut

$$
\frac{7.5 \times 10^{8}}{2.5 \times 10^{3}}
$$

- If your answer gives you a coefficient that is not between 1-10, you need to change your answer! IT IS NOT IN SCIENTIFIC NOTATION YET!

$$
\begin{gathered}
\left(2.6 \times 10^{5}\right)\left(7 \times 10^{2}\right) \\
=18.2 \times 10^{7}
\end{gathered}
$$

WHICH ONE WILL IT BE?

A) 1.82×10^{6}

2 of these from
B) 1.82×10^{7}
C) 1.82×10^{8}
your homework are like this!!!

TRY THESE...

1. $\left(8.1 \times 10^{3}\right)\left(6.4 \times 10^{2}\right)$
2. $\frac{2 \times 10^{9}}{2.5 \times 10^{6}}$
3. $8.1 \cdot 6.4=51.84$
$3+2=5$
51.84×10^{5}
$=5,184,000$
$=5.184 \times 10^{6}$

$$
\text { 2. } 2 \div 2.5=0.8 ~ 子 \begin{aligned}
& 9-6=3 \\
& 0.8 \times 10^{3} \\
& =800 \\
& =8 \times 10^{2}
\end{aligned}
$$

HOMEWORK:

- p. 63 (1, 2, 4, 8) and

○ p. 65 (19, 21, 22)

- No calculator allowed!

๑NO WORK SHOWN = NO CREDIT!

STORY PROBLEMS IN PARTNERS!

- Take turns being the writer
- Take turns using the calculator
- If you are not writing, you still need to contribute equally by being present and helping verbally. Communicate with your partner!

ADD, SUBTRACT, MULTIPLY, OR

DIVIDE?

- The population of the United States is about 3×10^{8} people and the population of the world is about $7 \times$ 10^{9}. How many times larger is the population of the world than the population of the US?

$$
\frac{7 \times 10^{9}}{3 \times 10^{8}}
$$

$$
\begin{aligned}
& \approx 2.3 \times 10^{1} \\
& \approx 23
\end{aligned}
$$

(So, 23 USAs equal up to the whole world, population-wise!)

ADD, SUBTRACT, MULTIPLY, OR DIVIDE

- The population of the United States is about 3×10^{8} people and the population of the world is about 7×10^{9}. How much larger is the population of the world than the population of the US?

$$
\begin{array}{cc}
\left(7 \times 10^{9}\right)-\left(3 \times 10^{8}\right) & \left(7 \times 10^{9}\right)-\left(\mathbf{3 \times 1 0 ^ { 8 })} \downarrow\right. \\
7,000,000,000 & \left(\mathbf{7 \times 1 0 ^ { 9 }) - (\mathbf { 0 . 3 } \times \mathbf { 1 0 } ^ { 9 })} \begin{array}{l}
\downarrow \\
-300,000,000 \\
6,700,000,000 \\
\text { or } 6.7 \times 10^{9}
\end{array} \quad \mathbf{6 . 7 \times \mathbf { 1 0 } ^ { 9 }}\right.
\end{array}
$$

FIND THE PERIMETER AND AREA OF

THE SQUARE:

$$
\text { Area }=l \cdot w
$$

Sides are the same in a square so we usually write:
Area $=s \cdot s$
Area $=s^{2}$
$\mathrm{A}=7^{2}$
$A=49 i n^{2}$
Perimeter $=s+s+s+s$
Perimeter $=4 s$
$\mathrm{P}=4 \cdot 7$
$P=28$ in

FIND THE PERIMETER AND AREA OF

THE SQUARE:

> Area $=s^{2}$
> $\mathrm{~A}=\left(5 a^{4}\right)^{2}$
> $\mathrm{~A}=25 a^{8}$
>
> Perimeter $=4 s$
> $\mathrm{P}=4 \cdot 5 a^{4}$
> $\mathrm{P}=4 \cdot 5 \cdot a \cdot a \cdot a \cdot a$
> $\mathrm{P}=20 a^{4}$

