a. Say whether the given sequence is arithmetic, geometric, or neither.
b. If it is arithmetic, give the common difference. If it is geometric, give the common ratio.
c. Find the next four terms.

1) $40.5, \frac{81}{4}, 10 \frac{1}{8}, \frac{81}{16}$
2) $7.9,5.7,3.5,1.3$

Find the first four terms of each sequence.

1) $f(1)=8 \quad f(n)=2 \cdot f(n-1)+10$
2) $a_{n}=10 \cdot 3^{n-1}$

Find the indicated term of the sequence.

1) $15^{\text {th }}$ term: $5,15,45, \ldots$
2) $6^{\text {th }}$ term: $a_{1}=3 \quad a_{n}=a_{n-1}+\frac{1}{3}$

Write an explicit and recursive rule for each sequence.

1) $-5,20,-80,320, \ldots$
2) $-8,-6,-4, \ldots$

Each rule represents a sequence. If the given rule is recursive, write it as an explicit rule. If the rule is explicit, write it as a recursive rule.

1) $f(1)=6 \quad f(n)=f(n-1)+2.5$
2) $a_{n}=22(5)^{n-1}$

3) Ben does one math problem on January $1^{\text {st }}, 2017$. He does five math problems on January $2^{\text {nd }}, 2017$, and nine math problems on January $3^{\text {rd }}$, 2017. The pattern continues in an arithmetic sequence. How many math problems did he do on January $14^{\text {th }}$?
4) How many math problems did he do total in the first two weeks of 2017 ?

5) If the $3^{\text {rd }}$ term of a geometric sequence is $\mathbf{5 0}$ and the $6^{\text {th }}$ term of a geometric sequence is $\mathbf{6 . 2 5}$, write an explicit and recursive formula for the sequence.

