BRING

TEXTBOOK

VOLUME 2!!!!!

Warmup 2/(\# of eggs in a baker's dozen)

Created by Mr. Lischwe $0.95 \rightarrow \frac{95}{100} \rightarrow \frac{19}{20}$ Solve $x \cdot \frac{5 x+6(-7 x}{2}=^{2}(3 x-1)$
$-2 x+6=6 x-2$

$$
8=8 x \quad 1=x
$$

If the list of fractions below continues in the same pattern, which term will be equal to 0.95 ?

Term	1	2	3
Fraction	$1 / 2$	$2 / 3$	$3 / 4$

A. the $100^{\text {th }}$
B. the $95^{\text {th }}$
C. the $20^{\text {th }}$
D. the $19^{\text {th }}$

Graph the inequality. $y<\frac{2}{3} x$

TURN IN ANGLE CHALLENGE

Go over Quizzes

OBJECTIVE: WHAT DOES CONGRUENT MEAN???

Symbol for
congruence!

Some other symbols to know

|| parallel

\perp perpendicular

Rigid Motions

-What are Rigid Motions???

- "Motions that preserve the size and shape of figures"
- Who can name some Rigid Motions that we know???
- Translations
- Rotations
- Reflections

Congruent = same size, same shape

- All the angles are the same
- All the side lengths are the same

Two Congruent Triangles...

If I tell you that triangle CAT is congruent to triangle DOG... what else can you conclude? Tell me everything you know!

Complete Reflection Questions 1 and 2 on pg. 910

Reflect

1. If you know that $\triangle A B C \cong \triangle D E F$, what six congruence statements about segments and angles can you write? Why?
$\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}, \angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$. The rigid motions that map
$\triangle A B C$ to $\triangle D E F$ also map the sides and angles of $\triangle A B C$ to the corresponding sides and angles of $\triangle D E F$, which establishes congruence.
2. Do your findings in this Explore apply to figures other than triangles? For instance, if you know that quadrilaterals $J K L M$ and $P Q R S$ are congruent, can you make any conclusions about corresponding
 parts? Why or why not?

Yes; since quadrilateral $J K L M$ is congruent to quadrilateral $P Q R S$, there is a sequence of rigid motions that maps $J K L M$ to $P Q R S$. This same sequence of rigid motions maps sides and angles of $J K L M$ to the corresponding sides and angles of $P Q R S$.

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
	$\begin{aligned} & \angle A \cong \angle D \\ & \angle B \cong \angle E \\ & \angle C \cong \angle F \end{aligned}$	$\begin{aligned} & \overline{A B} \cong \overline{D E} \\ & \overline{B C} \cong \overline{E F} \\ & \overline{A C} \cong \overline{D F} \end{aligned}$
polygon $P Q R S \cong$ polygon $W X Y Z$	$\begin{aligned} & \angle P \cong \angle W \\ & \angle Q \cong \angle X \\ & \angle R \cong \angle Y \\ & \angle S \cong \angle Z \end{aligned}$	$\begin{aligned} & \overline{P Q} \cong \overline{W X} \\ & \overline{Q R} \cong \overline{X Y} \\ & \overline{R S} \cong \overline{Y Z} \\ & \overline{P S} \cong \overline{W Z} \end{aligned}$

Highlight! pg. 910

Corresponding Parts of Congruent Figures Are Congruent

If two figures are congruent, then corresponding sides are congruent and corresponding angles are congruent.

Helpful Hint

When you write a statement such as
$\triangle A B C \cong \triangle D E F$, you are also stating which parts are congruent!!!

Let's Look at Example A on pg. 910

Example $1 \triangle A B C \cong \triangle D E F$. Find the given side length or angle measure.
(A) $D E$

Step 1 Find the side that corresponds to $\overline{D E}$.
Since $\triangle A B C \cong \triangle D E F, \overline{A B} \cong \overline{D E}$.
Step 2 Find the unknown length.
$D E=A B$, and $A B=2.6 \mathrm{~cm}$,
so $D E=2.6 \mathrm{~cm}$.

Try Part B on pg. 910!

(B) $\mathrm{m} \angle B$

Step 1 Find the angle that corresponds to $\angle B$.
Since $\triangle A B C \cong \triangle D E F, \angle B \cong \angle E$.
Step 2 Find the unknown angle measure.

$$
\mathrm{m} \angle B=\mathrm{m} \angle E \text {, and } \mathrm{m} \angle E=65^{\circ} \text {, so } \mathrm{m} \angle B=65^{\circ} \text {. }
$$

Try Questions 3 - 5 on pg. 911

3. Discussion The triangles shown in the figure are congruent. Can you conclude that $\overline{J K} \cong \overline{Q R}$? Explain.

No; the segments appear to be congruent, but the correspondence between the triangles is not given, so you cannot assume $\overline{J K}$ and $\overline{Q R}$ are corresponding parts.
$\Delta S T U \cong \triangle V W X$. Find the given side length or angle measure.

4. $S U$

Since $\triangle S T U \cong \triangle V W X, \overline{S U} \cong \overline{V X}$.
$S U=V X=43 \mathrm{ft}$.
5. $\mathrm{m} \angle S$

Since $\triangle S T U \cong \triangle V W X, \angle S \cong \angle V$.
$\mathbf{m} \angle S=\mathbf{m} \angle V=38^{\circ}$.

Try Questions 6-7 on pg. 912

Quadrilateral $G H J K \cong$ quadrilateral $L M N P$. Find the given side length or angle measure.

6. $L M$

Since $G H J K \cong L M N P, \overline{G H} \cong \overline{L M}$.
Therefore, $\mathbf{G H}=\boldsymbol{L M}$.
$4 x+3=6 x-13 \rightarrow 8=x$
$L M=6 x-13=6(8)-13=35 \mathrm{~cm}$
7. $\mathrm{m} \angle H$

Since quadrilateral $G H J K \cong$ quadrilateral $L M N P, \angle H \cong \angle M$. Therefore, $\mathrm{m} \angle H=\mathrm{m} \angle M$.
$9 y+17=11 y-1 \rightarrow 9=y$
$\mathrm{m} \angle \mathrm{H}=(9 y+17)^{\circ}=(9 \cdot 9+17)^{\circ}=98^{\circ}$

Prove: D is the midpoint of $\overline{B C}$.

What do we KNOW?
What are we trying to prove?

pg. 912

Example 3 Write each proof.

(A) Given: $\triangle A B D \cong \triangle A C D$

Prove: D is the midpoint of $\overline{B C}$.

Statements	Reasons
1. $\triangle A B D \cong \triangle A C D$	1. Given
2. $\overline{B D} \cong \overline{C D}$	2. Corresponding parts of congruent figures are congruent.
3. D is the midpoint of $\overline{B C}$.	3. Definition of midpoint.

Given: Quadrilateral $J K L M \cong$ quadrilateral $N P Q R ; \angle J \cong \angle K$

Prove: $\angle J \cong \angle P$

What do we KNOW?

What are we trying to prove?

