

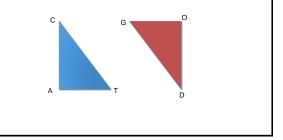
Plan for the Week

- Triangle Congruence and Proofs
- NO QUIZ ON FRIDAY.
- This will give everyone time to make up the quiz from last Friday

congruence!

- ∥ parallel
- ⊥ perpendicular

Rigid Motions

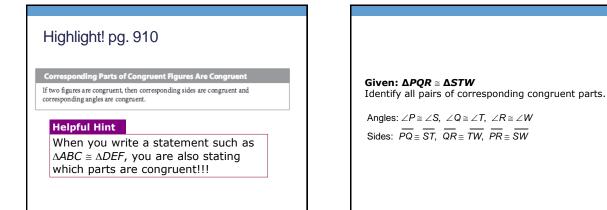

- What are **Rigid Motions**???
 - "Motions that preserve the size and shape of figures"
- Who can name some Rigid Motions that we know???
 - Translations
 - Rotations
 - Reflections

Congruent = same size, same shape

- What do we mean by same shape? • All the angles are the same
- What do we mean by same size?
 All the side lengths are the same

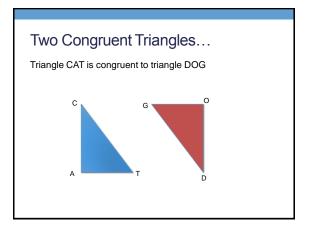
Two Congruent Triangles...

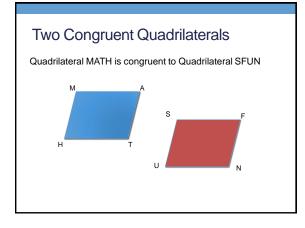
If I tell you that triangle CAT is congruent to triangle DOG... what else can you conclude? Tell me everything you know!


Complete Reflection Questions 1 and 2 on pg. 910

Reflect

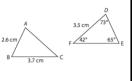
 If you know that △ABC ≅ △DEF, what six congruence statements about segments and angles can you write? Why?
 AB ≅ ○F, BC ≅ EF, AC ≅ DF, ∠A ≅ ∠D, ∠B ≅ ∠E, ∠C ≅ ∠F. The rigid motions that map △ABC to △DEF also map the sides and angles of △ABC to the corresponding sides and angles of △DEF, which establishes congruence.

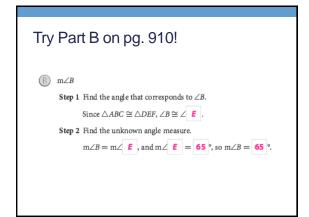

2. Do your findings in this Explore apply to figures other than triangles! For instance, if you know that quadrilaters! *KILM* and *PORS* are congruent. *M M*

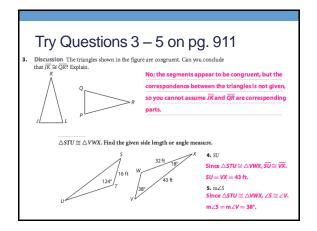

operties of Congruent Po	olygons	
DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$A \xrightarrow{B} B \xrightarrow{D} B \xrightarrow{F} A \xrightarrow{F} $	$\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
$P = \begin{array}{c} P \\ \downarrow \\$	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$\overline{PQ} \cong \overline{WX}$ $\overline{QR} \cong \overline{XY}$ $\overline{RS} \cong \overline{YZ}$ $\overline{PS} \cong \overline{WZ}$

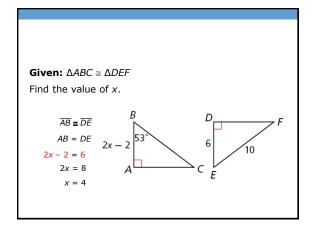
If polygon $LMNP \cong$ polygon EFGH, identify all pairs of corresponding congruent parts.

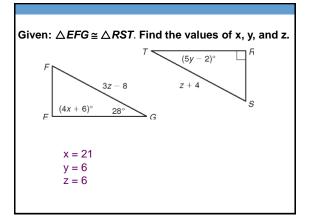
 $\begin{array}{l} \text{Angles: } \angle L \cong \angle E, \ \angle M \cong \angle F, \ \angle N \cong \angle G, \ \angle P \cong \angle H \\ \text{Sides: } \overline{LM} \cong \overline{EF}, \ \overline{MN} \cong \overline{FG}, \ \overline{NP} \cong \overline{GH}, \ \overline{LP} \cong \overline{EH} \end{array}$

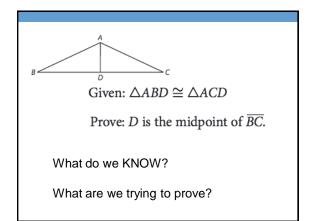


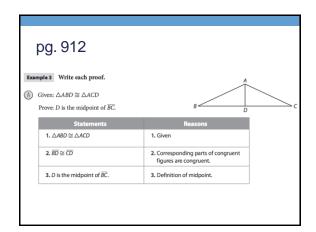

Let's Look at Example A on pg. 910

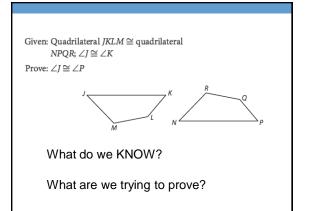

Example 1 $\triangle ABC \cong \triangle DEF$. Find the given side length or angle measure.


A DE


Step 1 Find the side that corresponds to \overline{DE} . Since $\triangle ABC \cong \triangle DEF$, $\overline{AB} \cong \overline{DE}$. Step 2 Find the unknown length. DE = AB, and AB = 2.6 cm, so DE = 2.6 cm.







Properties of Equality	
Reflexive Property of Equality	a = a
Symmetric Property of Equality	If a = b then b = a
Transitive Property of Equality	If a = b and b = c then a = c

Highlight pg. 911	
Properties of Congruence	
Reflexive Property of Congruence	$\overline{AB} \cong \overline{AB}$
Symmetric Property of Congruence	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AD}$.
Transitive Property of Congruence	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Try B on pg. 913	
Given: Quadrilateral <i>JKLM</i> \cong quadrilateral <i>J</i> $NPQR; \angle J \cong \angle K$ Prove: $\angle J \cong \angle P$	M L N
Statements	Reasons
Statements 1. Quadrilateral JKLM ≅ quadrilateral NPQR	Reasons 1. <mark>Given</mark>
1. Quadrilateral JKLM ≅ quadrilateral NPQR	1. Given

tite each proof. Given: $\triangle SVT \cong \triangle SWT$ Prove: \overline{ST} bisects $\angle VSW$.	5
Statements	Reasons
Statements 1. △SVT ≅ △SWT	
	Reasons

9.	Given: Quadrilateral ABCD ≌ quadrilateral EPGH; AD ≌ CD Prove: AD ≌ GH	
	Statements	Reasons
	1. Quadrilateral <i>ABCD</i> \cong quadrilateral <i>EFGH</i>	1. Given
	2. $\overline{AD} \cong \overline{CD}$	2. Given
	3. $\overline{CD} \cong \overline{GH}$	3. Corresponding parts of congruent
		figures are congruent.
	4. AD ≅ GH	4. Transitive Property of Congruence

0	Elaborate
10.	A student claims that any two congruent triangles must have the same perimeter. Do you agree? Explain. Yes; since the corresponding sides of congruent triangles are congruent, the sum of the
	lengths of the sides (perimeter) must be the same for both triangles.
11.	If $\triangle PQR$ is a right triangle and $\triangle PQR \cong \triangle XYZ$, does $\triangle XYZ$ have to be a right triangle? Why or why not? Yes: since $\triangle PQR$ is a right triangle, one of its angles is a right angle. Since corresponding
	parts of congruent figures are congruent, one of the angles of $\triangle XYZ$ must also be a right
	angle, which means $ riangle XYZ$ is a right triangle.
12.	Essential Question Check-In Suppose you know that pentagon ABCDE is congruent to pentagon FGHJK. How many additional congruence statements can you
	write using corresponding parts of the pentagons? Explain. There are five statements using the congruent corresponding sides and five statements
	using the congruent corresponding angles.

Homework

• Pg. 914- 916 (1-5, 14-16 JUST TRY YOUR BEST)