Created by Mr. Lischwe Warmup $1/(3^2 + 2^3)$ YOU ARE NOT ALLOWED TO USE A CALCULATOR FOR THIS WARMUP!!!

- 1) Guess: what do you think 22³ is?
- 2) Guess: what do you think 3²² is?
- 3) Guess: what do you think 2⁰ is?
- 4) Guess: what do you think 4⁻² is?
- 5) Make up your own exponent problem that equals $20x^{12}$.

2) 5⁹ 4) h³⁶ 6) 5⁸ 8) 1,331c¹² 10) 64m³⁰n⁶⁶ 20) x = 5 21) x = 3 22) To simplify $(2a^3)(4a^6)$, multiply 2 times 4, keep the a, and add 3 + 6.

14) Length x width x height To simplify $(2a^3)^6$, do 2 to = $3w^4 \cdot 3w^4 \cdot 3w^4$ the 6th power, and multiply = $27w^{12}$ 3 x 6.

p. 35 (2-10 even, 14, 20, 21)

Corrections People

- Correct on back in a different color, then get them checked by me.
- If correct, do all 3 problems of exit ticket redo. Get this checked by me as well.
- If correct, try challenge problem.

All Correct People

- Attempt challenge problem, then get it checked by me.
- If correct, become a "student helper" and help other people at your table.

Yesterday's Problems:

1)
$$8x^4 \cdot 4x^8$$
 2) $\frac{16y^7}{8y}$ **3)** $(3z^5)^3$

Corrections/Extension

 $x^8 \cdot x^2$ $= x^{10}$ $(x \cdot x \cdot x) \cdot (x \cdot x)$ $8x^8 \cdot 2x^2$ $= 16x^{10}$ $(\mathbf{8}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x}\cdot \mathbf{x})\cdot (\mathbf{2}\cdot \mathbf{x}\cdot \mathbf{x})$ $= y^6$ **y**⁸ $y \cdot y \cdot y$ $\overline{y^2}$ $y \cdot y$ $\mathbf{8} \cdot \mathbf{y} \cdot \mathbf{y}$ $8y^8$ $=4y^{6}$ $2 \cdot y \cdot y$ $2y^2$ $(x^8)^2 \xrightarrow{(x \cdot x \cdot x) \cdot (x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x)}$ $= x^{16}$ $(8x^8)^2$ $(8 \cdot x \cdot x) \cdot (8 \cdot x \cdot x)$ $= 64x^{16}$ Let's Review:

Table of Contents (2nd Semester)

- p. 1 Exponent Basics (1.2)
- p. 2 Multiplying and Dividing Powers (1.3)
- p. 3 Power to a Power (1.4)
- p. 4 Zero & Negative Exponents (1.5)

Zero & Negative Exponents

4

Discover how zero & negative exponents work

- » You and your elbow partner will be working on the TOP HALF of the exploration page.
- » This exploration will help you figure out how ZERO EXPONENTS work.

Zero Exponents

Answer using the shortcut?

Answer doing it the long way?

Zero Exponents

» Find a pattern and use it to complete the table:

Exponent Form	tial Stand Form
24	16
2 ³	8
2 ²	4
2 ¹	2
2 ⁰	
2 ⁻¹	
2 ⁻²	
2 ⁻³	
2-4	

The "invisible 1"

• Any time you expand a power, there is really an "invisible 1" being multiplied by everything.

$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

• You don't need to write the 1 when you expand, but if you understand that it is there, it will make some things we learn later make MUCH more sense.

•
$$2d^3 = \boxed{2 \cdot d \cdot d \cdot d}$$

For 5°, there are no 5's, but the invisible 1 is still there!!!

The "invisible 1"

Zero Exponents:

» Anything to the zero power is 1!

Examples

1) 9⁰

2) $\frac{a^6}{a^6}$

3) 4x⁰

4) $\left(\frac{8x^3y^2}{0.27abc} + 12.5q\right)^0$

Zero Exponents

»a⁰ is NOT simplified!!! You must continue and put 1 to get full credit.