Warmup 3/(\# of edges on a cube + \# of vertices on a cube - \# of faces on a cube
(This is Week 1!)
TURN IN YOUR UNUSED RESTROOM PASSES!!!
) Get your $3^{\text {rd }} 9$ weeks goal down from the \#goals cabinet. (Also, get a calculator while you're up there.) Then write about how successful you were with that goal, and why.
2) Draw a cube, triangular prism, and pentagonal prism. Use these pictures to verify that the problem in the date is correct. (Today is the $20^{\text {th }}$.)

AND THE ANSWER IS...

$$
\underset{\text { kernels }}{1089}
$$

Strategies we used???

Closet Estimates...

- The strategy I was hoping you would use:
- Figure out how many kernels are in 1 "layer"
- Think of the cylinder as layers of these circles stacked on top of each other
- Greta \& Wyatt - 1050
- Multiply the \# of kernels in 1 layer by how many "layers" there would be
- WHY WERE OUR ESTIMATES TOO LOW???
- There are gaps in between the popcorn kernels, which causes the kernels to "settle" more. Most people don't think to account for this.

Volume of a Cylinder

$$
V=\pi r^{2} \cdot h
$$

or = radius of the base

- h = height of cylinder
- Find the volume. Round to the nearest tenth.

Popcorn Challenge: Part 2
How many of the "cones" fill
up the cylinder?

- Goal: Figure out how many kernels of popcorn would fit in the cone.
- Demonstration (need a volunteer)
- The cone and cylinder have the same height and the same radius. I will pass around the cylinder and the cone - you may look at it for a few seconds.
- You and your group need to discuss and come up with how many kernels of popcorn you think fit in the

Table of Contents (2 ${ }^{\text {nd }}$ Semester)

```
Exponent Basics (1.2)
    Multiplying and Dividing Powers (1.3)
    Power to a Power (1.4)
    Zero & Negative Exponents (1.5)
    Scientific Notation (1.6)
    Calcluating with Scientific Notation (1.7)
    Angle Basics
    Angles formed by Parallel Lines (5.1)
    Angles of Triangles (5.3)
    Transformations (6.1-6.3)
    Rotations (handout)
    Reverse Transformations
    Pythagorean Theorem
    Distance on the Coordinate Plane
    Distance on the Coordinate Plane
    Volume of Prisms & Cylinders
    Volume of Pyramids, Cones, & Spheres
```


Volume of a Cone

$V=\frac{1}{3} \pi r^{2} \cdot h \quad$ OR: $V=\frac{\pi r^{2} \cdot h}{3}$

- Basically, 3 cones $=1$ cylinder (if the radius \& height is the same)

We just learned....

What about a sphere???

- The volume of a cone is $1 / 3$ of the volume of the cylinder with the same base (radius) and height.

- The volume of a sphere is of the volume of the cylinder with the same radius and height.

The answer...

- The volume of a sphere is TWO-THIRDS of the volume of the cylinder with the same radius and height.

Volume of a sphere

- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot \boldsymbol{h}\right)$
- But...
- In a sphere, what is another way of saying the "height"?

ere

Volume of a sphere

"Height" of a sphere $=$ diameter $=2 \bullet$ radius

- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot h\right)$
- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot 2 r\right)$
- $V($ sphere $)=\frac{2}{3} \cdot 2 \cdot \pi r^{2} \cdot r$
- $V($ sphere $)=\frac{4}{3} \pi r^{3}$

Drawing a sphere

Find the volume:
you do, it just looks like a circle.

- One way around this is to draw in the circle around the middle (like the "Equator")

- Round to the nearest tenth.

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
V=\frac{4}{3} \pi(9)^{3} \\
V=972 \pi \mathrm{~cm}^{3} \\
V \approx 3053.6 \mathrm{~cm}^{3}
\end{gathered}
$$

