Warmup 5/(The smallest \# of sides a polygon

 can have)Created by Mr. Lischwe
Below are some rules/patterns that do NOT have to do with consecutive sums. For each one, try to figure out how to put the rule/pattern into words. (It's harder than it seems, but you will have to do this for the project!)

$$
\begin{aligned}
& \text { 1) } 11 \cdot 1=11 \\
& 11 \cdot 2=22 \\
& 11 \cdot 3=33 \\
& 11 \cdot 4=44 \\
& 11 \cdot 5=55 \\
& 11 \cdot 6=66 \\
& 11 \cdot 7=77 \\
& 11 \cdot 8=88 \\
& 11 \cdot 9=99 \\
& \text { 2) } \frac{1}{2}-\frac{1}{3}=\frac{1}{6} \quad \frac{1}{5}-\frac{1}{6}=\frac{1}{30} \\
& \begin{aligned}
\frac{1}{9}-\frac{1}{10} & =\frac{1}{90} \\
9 & +9=18
\end{aligned} \\
& 99+99=198 \\
& 999+999=1998 \\
& 9999+9999=19998 \\
& 99999+99999=199998
\end{aligned}
$$

1) $11 \cdot 1=11$
$11 \cdot 2=22$
$11 \cdot 3=33$
$11 \cdot 4=44$
$11 \cdot 5=55$
$11 \cdot 6=66$
$11 \cdot 7=77$
$11 \cdot 8=88$
$11 \cdot 9=99$
"If you multiply 11 by a 1 -digit number, you get a 2 -digit number, where both digits are the number you multiplied by."

$$
\begin{array}{ll}
\text { 2) } & \frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{array} \frac{\frac{1}{5}-\frac{1}{6}=\frac{1}{30}}{\frac{1}{9}-\frac{1}{10}=\frac{1}{90}} \begin{aligned}
& \frac{1}{15}-\frac{1}{16}=\frac{1}{240}
\end{aligned}
$$

"If you subtract 2 fractions with 1 in the numerator and consecutive numbers in the denominators, the difference will be a fraction with 1 in the numerator and the product of the denominators in the denominator."

$$
\text { 3) } \begin{aligned}
9+9 & =18 \\
99+99 & =198 \\
999+999 & =1998 \\
9999+9999 & =19998 \\
99999+99999 & =199998
\end{aligned}
$$

"If you add a number where all the digits are 9 with itself, you will get a sum whose first digit is a 1 , last digit is an 8 , and all middle digits are 9 's. The number of 9 's is 1 less than the number of 9 's in each addend."

Another pattern...

$$
\begin{aligned}
1 \cdot 1 & =1 \\
11 \cdot 11 & =121 \\
111 \cdot 111 & =12321 \\
1111 \cdot 1111 & =1234321 \\
11111 \cdot 11111 & =123454321 \\
111111 \cdot 111111 & =12345654321 \\
1111111 \cdot 1111111 & =1234567654321
\end{aligned}
$$

Discuss out loud: How would you word THIS one???
"If you multiply a number where all the digits are 1 by itself, you will get a number whose digits start with 1 and go consecutively up to the number of digits in each factor and then back down to 1 "

TURN IN Week 7 Warmups

 - MAKE SURE YOUR NAME IS ON IT!
Consecutive Sums Project (Day 2)

- Your group should be deciding on some rules that you figured out. You should be able to explain the rule in words.
- Example that isn't true, but gives an idea of what a rule could look like:
- "When you add 6 consecutive numbers together, the sum is always 30."
- A bad example of a rule:"It goes up by 3"
- Why is this bad?

"It goes up by 3"

- WHAT goes up by 3 ? (The sums)
- Better word for "goes up" = increase
- And most importantly: WHEN do they increase by 3???
- "When you add \qquad , the sums increase by 3 "

How could you make this rule better?

-"If you multiply anything by ten, it always ends in zero."

- "It" \rightarrow "the product"
- This is technically not true!
- If you multiply any whole number by ten, the product will always end in zero.
- Tips for writing rules
- Use mathematical vocabulary
- USE PRECISE LANGUAGE!!!

Escape Problem

- 42 Creatures, 180 arms
- Strategy: Guess \& Check
- 21 of each: $21 \cdot 6+21 \cdot 3=126+63=189$

Too high! (need fewer zeebles)

- 20 Zeebles, 22 Quarks: $20 \cdot 6+22 \cdot 3=120+66=186$ Too high!
- 19 Zeebles, 23 Quarks: $19 \cdot 6+23 \cdot 3=114+69=183$

Too high!

- ***If we take out a Zeeble and add a Quark, we subtract three arms!***
- 18 Zeebles, 24 Quarks: $18 \cdot 6+24 \cdot \mathbf{3}=108+72=180$ There it is!!!

Strategy: Draw a Picture

Escape Problem

-42 Creatures, 180 arms

- Strategy: Start w/ all Quarks
- 42 Quarks: $42 \cdot 3=126 \quad$ We need 54 more arms!
-***If we change a Quark into a Zeeble, we add three arms.
- $54 \div 3=18$. So, we need to change 18 of the Quarks into Zeebles.
- 42 - 18 = 24 Quarks, 18 Zeebles

Escape Problem

- 42 Creatures, 180 arms
- Strategy: Start w/ all Zeebles
- 42 Zeebles: $42 \cdot 6=252$ We have 72 arms too many!!!
- ***If we change a Zeeble into a Quark, we subtract three arms.
- $72 \div 3=24$. So, we need to change 24 of the Zeebles into Quarks.
- 42 - 24 = 18 Zeebles, 24 Quarks

Escape Problem

- 42 Creatures, 180 arms
- Strategy: System of Equations
- Creatures Equation: $\quad Q+Z=42$
- Arms Equation: $\quad 3 Q+6 Z=180$
- You can multiply the top equation by -3 to eliminate \mathbf{Q}, or by $\mathbf{- 5}$ to eliminate \mathbf{Z}.
- Or you could write the first equation as " $\mathrm{Q}=42$ - Z " and do substitution by plugging in " 42 - Z " for " Q "

Your goal for today:

- Continue to explore/figure out some rules and patterns
- You will likely stay on your own paper for today, but if your group feels like you are already ready for the poster, you may start on your poster today.
- Q: How many rules do I need?
- A: There is no set amount. Last year one of the best posters had only two rules, but they were really good.

What should we put on our poster?

- Title: "Consecutive Sums: Our Discoveries"
- Everybody's name
- The rules/patterns themselves. Think carefully about how to word them well!!!
- For each pattern or rule, put some examples that show how it works
- GOING ABOVE AND BEYOND: write an explanation of why the rule works
- You can also put a rule that you thought was true but later realized was false, and explain how you discovered it was false.
- YOUR POSTER SHOULD BE NEAT AND ORGANIZED!!!
- Use COLOR effectively!!!

