Warmup 4/18

1. Inside your desk should be:

A graphing sheet
A dry erase marker
An eraser
2. Write down the three types of transformations we learned about.
3. From 1-10, rate your confidence level in how well you could do each type of transformation TODAY.

NEW VOCAB WORDS

Dilation - A transformation that creates a figure that is the same shape but different sizes

Scale Factor - the number you are multiplying by in a dilation

- Represented using the variable "k"

On your first graph:

Draw the trapezoid with vertices $(-1,1),(1,1)$, $(2,-1),(-2,-1)$
Multiply both coordinates in each point by $\mathbf{2}$ and draw the new trapezoid.
Multiply both coordinates in each point (still of the original one) by 5 and draw the new trapezoid.

NEW VOCAB WORDS

How do I do a dilation? (centered at the origin): Just multiply the x and y coordinates of each vertex by the scale factor (\mathbf{k})!

NEW VOCAB WORDS
\squareHow do I do a dilation? (centered at the origin): Just multiply the x and y coordinates of each vertex by the scale factor (k)!

On your second graph:

Draw the rectangle witl vertices (1, 1); (1, 3); (5, 3); $(5,1)$
Perform a dilation with a scale factor of 2 .

What was the scale factor???

(Figure A is the preimage. B is the image)

$$
k=1 / 2
$$

On your third graph:

Draw the triangle with vertices (-3, 6); (0, 9); $(6,6)$
Perform a dilation with a scale factor of $\frac{1}{3}$.

Draw the triangle with vertices $(-3,6)$; $(0,9)$;
$(6,6)$
Perform adilation with a scale factor of $\frac{1}{3}$.

What was the scale factor???
(Figure A is the preimage. B is the image)

$$
k=3
$$

What was the scale factor???
(Figure A is the preimage. B is the image)
$k=1.5$

What was the scale factor???

(Figure A is the preimage. B is the image)

Scale Factor Formula

\square Original \times (scale factor) = Image

\square Therefore:
\square Scale Factor $=\frac{\text { side length of IMAGE }}{\text { side length of ORIGINAL }}$

- You flip a coin and roll a dice. What is the probability you will get heads and a number higher than 4 ?

$$
\frac{1}{2} \cdot \frac{2}{6}=\frac{2}{12} \rightarrow \frac{1}{6}
$$

Guessing on a Quiz

- You take a 5-question multiple choice test. Each question has 4 choices. You did not study at all, so you guess randomly. What is the probability that you will get all 5 questions correct?

$$
\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}=\frac{1}{1024}
$$

