Convert the following recursive geometric rule to an explicit rule:

$$
\begin{gathered}
a_{n}=-5 \cdot a_{n-1} \\
a_{1}=4
\end{gathered}
$$

$$
a_{n}=4 \cdot(-5)^{n-1}
$$

Find the slope between the following points: $(-5,2)$, and $(3,9)$

$$
\frac{9-2}{3-(-5)}=\frac{7}{8}
$$

2. Simplify using exponent rules.

$$
\begin{array}{ll}
x^{5} \cdot x^{10} x^{15} & \frac{2 y^{24}}{4 y^{24}}-\frac{1}{2} \\
\left(x^{2}\right)^{12} x^{24} & (2)^{-2} \frac{1}{4} \\
\hline
\end{array}
$$

Write the equation of a line in slope intercept form of a line that has a slope of -2 and contains $(1,-6) . \quad y=m x+b$

$$
\begin{aligned}
-6 & =-2(1)+b \\
-6 & =-2+b \\
-4 & =b
\end{aligned}
$$

Check Homework

Quiz Tomorrow

\square Naming Figures
\square Finding the measures of angles and segments
\square Problems like the pink sheet
\square Midpoint and Distance
\square will give you the distance formula

Alternate Method: Distance Formula

\square How do you get the length of the HORIZONTAL leg?Subtract the x-coordinates!
\square How do you get the length of the VERTICAL leg?
Subtract the y-coordinates!

$$
a^{2}+b^{2}=c^{2}
$$

When l'm finding the distance, which letter is that?

$$
\sqrt{a^{2}+b^{2}}=c
$$

If " a " is the horizontal distance and " b " is the vertical distance:

$$
\sqrt{(x-x)^{2}+(y-y)^{2}}=c
$$

Distance Formula

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the points, then:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

\square NOTE: If this formula confuses you, you don't have to use it (at least not this year). You can just draw the triangle and use $a^{2}+b^{2}=c^{2}$!

Find the distance between:

$(2,10)$ and $(6,3)$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(6-2)^{2}+(3-10)^{2}} \\
& d=\sqrt{4^{2}+(-7)^{2}} \\
& d=\sqrt{16+49} \\
& d=\sqrt{65} \quad d \approx \text { 8.1 units }
\end{aligned}
$$

To find the distance between 2 points...

\square You can use the formula

OR

\square Graph them, draw the triangle, and use the Pythagorean Theorem
\square When would each be more useful than the other?

Find the distance between the points

$$
(-7,-4) \text { and }(-4,6)
$$

$$
\begin{aligned}
& d=\sqrt{(-4--7)^{2}+(6-4)^{2}} \\
& d=\sqrt{(3)^{2}+(10)^{2}} \\
& d=\sqrt{9+100} \\
& d=\sqrt{109} \\
& d \approx 10.4 \text { units }
\end{aligned}
$$

Find the length of the line segment

On a town map, each unit of the coordinate plane represents 1 mile. Three branches of a bank are located at $A(-3,1), B(2,3)$, and $C(4,-1)$.

A bank employee drives from Branch A to Branch B and then drives halfway to Branch C before getting stuck in traffic. What is the minimum total distance the employee may have driven before getting stuck in traffic? Round to the nearest tenth of a mile.

REVIEW

Whiteboards

How many of these are

appropriate names for this line?

How many of these are

appropriate names for this

 My angle?
$\angle N M L \quad \angle N L M$
$\angle M L K \angle K L M$
$\overrightarrow{B D}$ bisects $\angle A B C, m \angle A B D=(x+15)^{\circ}$, and $\mathrm{m} \angle A B C=(12 x)^{\circ}$.
What is the value of x ?

$(x+15)+(x+15)=12 x$

$$
\begin{aligned}
2 x+30 & =12 x \\
30 & =10 x \quad 3=x
\end{aligned}
$$

M is the midpoint of $\overline{R S}$. R has coordinates $(6,-4)$, and M has coordinates $(2,1)$. What are the coordinates of S ?

$$
\begin{aligned}
& (6,-4) \cup(?, ?) \\
& \frac{6+x}{2}=2 \quad \frac{-4+y}{2}=1 \\
& \downarrow \\
& 6+x=4 \quad \begin{array}{l}
\downarrow \\
\vdots=-4+y=2 \\
x=2,1) \\
(-2,6) \quad y=6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { END }(6,-4))+5 \\
& \operatorname{MID}^{-4(2,1)}\left(\begin{array}{l}
-4(2, ?)+5 \\
\text { END }(?, 2)
\end{array}\right. \\
& (-2,6)
\end{aligned}
$$

If $m \angle A B C=$, find the value of l . x .

If $m \angle A B C=150^{\circ}$, find the value of x .

$$
\begin{aligned}
37+x+37 & =150 \\
74+x & =150 \\
x & =76
\end{aligned}
$$

How many points do you use if you are naming a plane?

If one of the endpoints is $(-3,7)$ and the midpoint is $(2,5.5)$, what are the coordinates of the other endpoint?

$$
(7,4)
$$

Find the distance between $(-4,9)$ and $(2,1)$.

$$
\begin{gathered}
6^{2}+8^{2}=d^{2} \\
\vdots \\
d=10
\end{gathered}
$$

Find the distance between $(-3,5)$ and $(6,13)$.

$$
\begin{gathered}
9^{2}+8^{2}=d^{2} \\
\sqrt{145}=d \\
12.0 \approx d
\end{gathered}
$$

Homework

Study for quiz!
Complete and check your worksheet using the answer key online (use a different color for corrections!

