Warmup 9/(\# of letters in

 "quattuordecillion")

1) Make a "quick sketch" of step 25.
2) Calculate the number of units in step 25.
3) Write an equation for the pattern.

Check Homework

Add to your table of contents...

Table of Contents

Simplifying \& Interpreting Expressions p. 1
Solving Equations p. 2
Fractions \& Story Problems p. 3
Equations with No Solution or Infinite Solutions p. 4
Inequalities p. 5
Compound Inequalities p. 6
Solving for a Variable p. 7
What is a Function? p. 8
Continuous or Discrete p. 9
Domain \& Range p. 10

$$
h(x)=\sqrt{x+10}
$$

\square WHY doesn't this graph have an arrow on the left???

\square In this equation, not all x-values are possible!
\square Every function has a domain: the set of all possible x-values of that function.

$$
c(x)=x^{2}-3
$$

\square Why doesn't this graph go below -3?
\square For many functions, not all y-values are possible.
\square The range of an equation/graph is all of the possible y-values you could get as outputs.

The domain of a relation is the set of first coordinates (or x-values) of the ordered pairs. The range of a relation is the set of second coordinates (or y-values) of the ordered pairs.

Give the domain and range.

The domain values are all x-values 1, 2, 5 and 6.

The range values are y-values $0,-1$ and -4.

Domain: $\{1,2,5,6\}$
Range: $\{-4,-1,0\}$

Give the domain and range for each.

$$
\begin{array}{|c|c|}
\hline 1 & 24 \\
\hline 2 & 9 \\
\hline 3 & -6 \\
\hline 4 & -21 \\
\hline 5 & -36 \\
\hline
\end{array}
$$

Domain: $\{1,2,3,4,5\}$
Range: $\{-36,-21,-6,9,24\}$

Domain: $\{1,4,7,12\}$ Range: \{4\}

$(1,5) ;(8,19) ;(4,11) ;(-8,-13),(1,5)$

Domain: $\{-8,1,4,8\}$
Range: $\{-13,5,11,19\}$

What do you think the domain and range is here?

The domain value is all x-values from 1 through 5, inclusive.

The range value is all y-values from 3 through 4, inclusive.

Domain: $1 \leq x \leq 5$
Range: $3 \leq y \leq 4$

$$
h(x)=\sqrt{x+10}
$$

The square root of a negative is undefined.
\square So in this equation, you could not get an answer for \mathbf{x}-values less than -10.
\square Domain for this graph: $\boldsymbol{x} \geq \mathbf{- 1 0}$

$$
c(x)=x^{2}-3
$$

Domain???
In this graph, the domain is all real numbers. The graph keeps going to the left and right. In the equation, you
 could plug in any number you want.
\square HOWEVER, on this graph, it is impossible to get y-values less than -3.
\square Domain for this graph: $\boldsymbol{y} \geq-3$

Domain \& Range?

Domain \& Range?

Why does the domain and range make sense given that the equation for this graph is
$y=x^{2}$?

What do you think is the domain and range for $y=$ $|x| ?$

Domain \& Range?

Domain \& Range?

Homework

\square Worksheet

