1. Create your own system of equations that would have a solution of $(8,-3)$.
2. We are going to do a check for understanding to test how well you are doing with graphing and substitution. Get ready!

p. 247 (1-10, 15)

1. $(1,6)$
2. $(-30,-18)$
3. $(-2,-12)$
4. $(15,30)$
5. $(7,11)$
6. $(4,1)$
7. $\left(\frac{1}{2}, 12 \frac{1}{2}\right)$
8. $\left(\frac{1}{4}, 5 \frac{1}{2}\right)$
$\{S+P=15$
9. $\left\{\begin{array}{l}S=P+7 \\ S=P+15\end{array}\right.$

$$
S=P+7
$$

11 shirts, 4 pairs of pants
10. $\left\{\begin{array}{l}P+H=49 \\ H=P+11\end{array}\right.$

Horatio has 30 games,
Preston has 19 games
15. The third one doesn't belong. Its solution is (-2, 1). The solution of the

$$
\text { other three is }(1,-2) \text {. }
$$ other three is $(1,-2)$.

CFU

- Just checking in to see where you're at.
- No asking questions. Just do your best!

Story Problem

- Jesse and Anders have 75 squirrels all together. Anders has 17 more squirrels than Jesse.
- Write and solve a system of equations to represent this situation.

Story Problem

- Jesse and Anders have 100 squirrels all together. Anders has 4 times as many squirrels as Jesse.
- Write and solve a system of equations to represent this situation.

What would you do here???

- $2 \mathrm{x}+2 \mathrm{y}=18$
- $3 \mathrm{x}-2 \mathrm{y}=12$

Solve Systems with Elimination

Converting Fractions and Decimals (1.1)
Solving x^{2} and x^{3} Equations (1.8)
Rational vs. Irrational (1.1)
Function Notation: $f(x)$
Worksheet: Graphing Functions
Slope
ctions - Looking for Patterns
Slope-Intercept Form
1 and 2 Step Equations
Equations w/ Variables on Both Sides
p. 17 Equations with no solution or Infinite Solutions
p. 18 Solving Systems by Graphing
p. 19 Solving Systems by Substitution
. 20 Solving Systems by Elimination

Objective:

- Use a new strategy (elimination) to solve systems of equations
- Most useful when BOTH equations have x and y on the same side
- Today, we are going to learn a strategy to solve systems where both equations are in STANDARD FORM, such as:

$$
\begin{aligned}
& 2 x+y=18 \\
& 3 x-y=-3
\end{aligned}
$$

SO:
- You can add 2 equations together and the third
equation will still be true.
- Ok...but how would that help me???
$\mathbf{2 x + y = 1 8}$
$+\mathbf{3 x - y = - 3}$
$5 x+\mathbf{0 y}=\mathbf{1 5}$
$5 x=15$
$x=3$

- Now substitute the first variable back in to either equation to find the second. equation will still be true.

$$
\begin{gathered}
2 x+y=18 \\
+3 x-y=-3 \\
\hline 5 x+0 y=15 \\
5 x=15 \\
x=3
\end{gathered}
$$

Together, with me:

$$
\begin{aligned}
& \mathbf{5 x - 2 y}=\mathbf{1 7} \\
& x+2 y=13
\end{aligned}
$$

Try these:

$-3 x+y=6$

$$
3 x+2 y=30
$$

When you show me a
$10 x-y=5$ correct answer + work
$-6 x+y=-9$ for one of the problems, you may volunteer to put it on the board.
$4 x-2 y=30$
$-4 x+6 y=-38$

MAIN IDEA:

- You can't completely solve an equation that still has 2 variables in it. There are unlimited solutions.
- You can solve an equation that has only 1 variable.
- Elimination Strategy:

1. Make sure you have opposite coefficients on a variable
2. Add the 2 equations together so that one of the variables gets "eliminated."
3. Solve for the first variable, then plug the answer back in to find the second

Ok...when would adding equations

 together help me???$$
\begin{aligned}
& 9 \mathrm{a}+10 \mathrm{~b}=16 \\
& \mathbf{x}+\mathbf{y}=20 \\
& +4 a-6 b=28 \quad+2 x+2 y=40 \\
& 13 a+4 b=44 \quad 3 x+3 y=60 \\
& p+q=4 \\
& +\mathbf{p}-\mathbf{q}=-27 \\
& 2 \mathrm{p}=-23 \quad \$-4=11 \\
& \begin{array}{ll}
-4 m+2 n=5 & +?+7=\mathbf{1 2} \\
+4 m+3 n=10
\end{array} \quad \begin{array}{ll}
\mathbf{~}+\mathbf{?}+\mathbf{3}=\mathbf{2 3}
\end{array} \\
& 5 \mathbf{n}=15 \quad 5 x+6 y=37 \\
& \begin{array}{r}
+5 x+2 y=29 \\
\hline 10 x+8 y=66
\end{array}
\end{aligned}
$$

Another legal math move...

- You are allowed to multiply an entire equation by any number.

$$
\begin{aligned}
& 2 x=10 \\
& 3(2 x=10) \\
& 6 x=30 \\
& \frac{1}{5} x+3=\frac{2}{5} x-4
\end{aligned}
$$

What could I multiply here?

$$
\begin{array}{r}
5 x+6 y=37 \\
+10 x-2 y=29 \\
\hline
\end{array}
$$

To eliminate " x ", you could multiply the first equation by - 2 - You would have -iox and 1ox

OR
To eliminate " y ", you could multiply the second equation by 3 - You would have 6y and -6y

What would you multiply them by to make them opposites???

$$
\begin{array}{r}
3 \text { and } \mathbf{- 1} \\
\frac{\bullet 3}{3} \text { and }-3
\end{array}
$$

What would you multiply them by to make them opposites???

$$
\frac{\begin{array}{l}
1 \\
\cdot 5
\end{array}}{\frac{5}{5} \text { and }-5}
$$

What would you multiply them by to make them opposites???

2 and 6

What would you multiply them by to make them opposites???

$$
\frac{-5 \text { and }-10}{10 \text { and }-10}
$$

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& -4 \text { and } 6 \\
& \bullet 3 \\
& \hline 12 \text { and }-12
\end{aligned}
$$

Example: Multiplying One Equation

$$
\begin{aligned}
& -2 x+4 y=8 \longrightarrow-2 x+4 y=8 \\
& 4(3 x-y=3) \longrightarrow \frac{12 x-4 y=12}{10 x}=20 \quad \\
& x=2 \\
& \text { Find y: }-2 x+4 y=8 \\
& -2(2)+4 y=8 \\
& (2,3) \quad-4+\begin{array}{r}
4 y=8 \\
4 y=12
\end{array} \\
& y=3
\end{aligned}
$$

What would you multiply them by to make them opposites???

Don't write, just watch:
$6 \mathbf{a}+\mathrm{b}=15 \longrightarrow 6 \mathrm{a}+\mathrm{b}=15$
$2(-3 \mathbf{a}+4 b=6) \longrightarrow \frac{-6 a+8 b=12}{9 b=27}$
and the rest is the same...

Try it!
$x+4 y=5$
$x+2 y=1$
 Created by Troy Chumley Warmup $11 /(10+10+10)$

Solve the system of equations by elimination.

1. $\left\{\begin{array}{l}8 x-4 y=32 \\ 7 x+4 y=13\end{array}\right.$
2. Create a problem that equals 1. (For the date tomorrow) My favorite problem will earn 10 LiveSchool Points. (Call me over and show me your problem when you have it)

Today's Objective

- Master yesterday's topic - Elimination
- Solve STORY PROBLEMS using elimination

Example: Multiplying One Equation

$$
\begin{aligned}
& -2 x+4 y=8 \longrightarrow-2 x+4 y=8 \\
& 4(3 x-y=3) \longrightarrow \frac{12 x-4 y=12}{10 x}=20 \quad \\
& \mathrm{x}=2 \\
& \text { Find y: }-2 x+4 y=8 \\
& -2(2)+4 y=8 \\
& (2,3) \quad-4+\begin{array}{r}
4 y=8 \\
4 y=12
\end{array} \\
& y=3
\end{aligned}
$$

HOMEWORK

- Elimination Worksheet
- EXTRA PRACTICE WORKSHEET PEOPLE - PLEASE KEEP WORKING ON THIS!!! COME IN FOR HELP IF YOU NEED IT!

What do you do when you CAN'T Eliminate right away???

- You need opposite coefficients, such as:
- $5 x$ and $5 x$
"3y and -3y
"-x and x
- Etc...

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{c}5 x-2 y=1 \\ 4 x+4 y=12\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{c}3 x+11 y=-35 \\ -x+3 y=5\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{c}-4 x+2 y=18 \\ 12 x-2 y=-34\end{array}\right.$

What do you do when you CAN'T
Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\left\{\begin{array}{c}
3 x+y=2 \\
3 x-2 y=32
\end{array}\right.
$$

What do you do when you CAN'T

 Eliminate right away???- How could you make it so that you have opposite coefficients?

$$
=\left\{\begin{array}{c}
3 x+y=2 \\
-1(3 x-2 y=32)
\end{array} \rightarrow \begin{array}{c}
3 x+y=2 \\
-3 x+2 y=-32
\end{array}\right.
$$

What do you do when you CAN'T

 Eliminate right away???- How could you make it so that you have opposite coefficients?

$$
=\left\{\begin{array} { c }
{ x + 4 y = 2 0 } \\
{ - 1 (x - 6 y = 1 5) }
\end{array} \rightarrow \left\{\begin{array}{c}
x+4 y=20 \\
-x+6 y=-15
\end{array}\right.\right.
$$

What do you do when you CAN’T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{l}2(3 x+y=2) \\ 3 x-2 y=32\end{array} \rightarrow \begin{array}{c}6 x+2 y=4 \\ 3 x-2 y=32\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{l}x+4 y=20 \\ x-6 y=15\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{c}2 x+4 y=8 \\ -3 x-3 y=-9\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{c}5 x+2 y=8 \\ 4 x-5 y=13\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$=\left\{\begin{array}{c}3(2 x+4 y=8) \\ 2(-3 x-3 y=-9)\end{array} \rightarrow \begin{array}{c}6 x+12 y=24 \\ -6 x-6 y=-18\end{array}\right.$

Try these...

No Multiplying
$\left\{\begin{array}{c}x+y=8 \\ -x+5 y=-20\end{array}\left\{\begin{array}{c}3 x+y=3 \\ -4 x-4 y=12\end{array}\right.\right.$

$$
(10,-2) \quad(3,-6) \quad(1,4)
$$

Story problem

- Henry gets paid for doing chores. Last week, he did 2 loads of laundry and 3 loads of dishes, and his parents paid him $\$ 12$. The week before, he did 7 loads of laundry and 6 loads of dishes, and his parents paid him $\$ 33$. How much does Henry earn for doing each type of chore?

$$
\begin{array}{cc}
\mathbf{- 2}(2 L+3 D=12) \\
7 L+6 D=33
\end{array} \longrightarrow\left\{\begin{array}{cc}
-4 L-6 D=-24 \\
7 L+6 D-33 \\
3 L & =9
\end{array}\right\}\left(L=3, ~ \begin{array}{l}
\text { Doing the laundry is } \$ 3, \\
\text { doing the dishes is } \$ 2 .
\end{array}\right.
$$

$$
N=32, A=27
$$

Nate is 32 years old, Anne is 27 years old

Story problem

- There are 14 total people at the Easter gathering adults and children. Each child found 4 Easter eggs and each adult found 3 Easter eggs. All together, 48 eggs were found. How many adults and children were at the gathering?

$$
\left\{\begin{array} { r l }
{ A + C = 1 4 } \\
{ 3 A + 4 C = 4 8 }
\end{array} \longrightarrow \left\{\begin{array}{rl}
-3 A-3 C & =-42 \\
3 A+4 C & =48 \\
C & =6 \\
A & =8
\end{array}\right.\right.
$$

There were 6 children and 8 adults.

27 What is the solution to this system of linear equations?

$$
\begin{array}{r}
2 x-2 y=10 \\
x+4 y=30
\end{array}
$$

A $(10,5)$
B $(50,-5)$
C $(0,5)$
D $(10,-5)$
$(0,5)$

$$
(10,-5)
$$

Homework

- Worksheet from yesterday

$$
\begin{aligned}
& 2 y-x=-8 \\
& 5 y+x=-6
\end{aligned}
$$

A 4
B 2
C -2
D -4

