Created by Parker S.

Warmup 12/(3+3)

1. Solve using the substitution method. When you finish, compare with others who are done. Help those who are stuck.

$$
\left\{\begin{array}{c}
2 x-8 y=14 \\
x=4 y+2
\end{array}\right.
$$

p. 247 (1-10, 14, 15)

1. $(1,6)$
2. $(-30,-18)$
3. $(-2,-12)$
4. $(15,30)$
5. $(7,11)$
6. $(4,1)$
7. $\left(\frac{1}{2}, 12 \frac{1}{2}\right)$
8. $\left(\frac{1}{4}, 5 \frac{1}{2}\right)$
9. $\left\{\begin{array}{c}S+P=15 \\ S=P+7\end{array}\right.$

11 shirts, 4 pairs of pants
10. $\left\{\begin{array}{l}P+H=49 \\ H=P+11\end{array}\right.$

Horatio has 30 games, Preston has 19 games
14. Possible answers: When you don't have a graph, when the intersection point is off the graph, when the intersection point is a fraction, when the equations are simple and easy to work out without a graph. 15. The third one doesn't belong. Its solution is $(-2,1)$. The solution of the other three is $(1,-2)$.

What would you do here???

- $2 \mathrm{x}+2 \mathrm{y}=18$
- $3 x-2 y=12$

Table of Contents

p. $1 \quad$ Converting Fractions and Decimals (1.1)
p. 2 Roots (1.8 \& 1.9)
p. 3 Solving x^{2} and x^{3} Equations (1.8)
p. 4 Rational vs. Irrational (1.1)
p. 5 What is a function?
p. 6 Function Notation: $\mathrm{f}(\mathrm{x})$
p. 7 Linear vs. Nonlinear Functions
p. 8 Constant Rate of Change
p. 9 Slope with a Graph
p. 10 Slope WITHOUT a graph
p. 11 Slope-Intercept Form
p. 12 Linear/Nonlinear Tables and Proportional Relationships
p. 131 and 2 Step Equations
p. 14 Equations w/ Variables on Both Sides
p. 15 Equations w/ Distributive Property
p. 16 Equations with No Solution or Infinite Solutions
p. 17 Solving Systems by Graphing
p. 18 Solving Systems by Substitution
p. 19 Solving Systems by Elimination

Solve Systems with Elimination

Objective:

- Use a new strategy (elimination) to solve systems of equations
- Most useful when BOTH equations have x and y on the same side
- Today, we are going to learn a strategy to solve systems where both equations are in STANDARD FORM, such as:

$$
\begin{aligned}
& 2 x+y=18 \\
& 3 x-y=-3
\end{aligned}
$$

IMPORTANT Q: If I combine the two balance scales together (hearts go with the smiley faces, clouds go with the stars), will it STILL be balanced???

SO:

- You can add 2 equations together and the third equation will still be true.
- Ok...but how would that help me???

$$
\begin{gathered}
2 x+y=18 \\
+3 x-y=-\mathbf{3} \\
\hline 5 x+0 y=15 \\
5 x=15 \\
x=3
\end{gathered}
$$

- Now substitute the first variable back in to either equation to find the second.

$$
\begin{aligned}
& \mathbf{2 x}+\mathrm{y}=\mathbf{1 8} \longrightarrow \mathbf{2}(3)+\mathrm{y}=18 \longrightarrow \mathbf{6}+\mathrm{y}=18 \\
& 3 x-y=-3 \longrightarrow 3(3)-y=-3 \longrightarrow 9-y=-3 \\
& \downarrow \\
& \text { either way... } y=12
\end{aligned}
$$

Together, with me:

$5 x-2 y=17$
$x+2 y=13$

MAIN IDEA:

- You can't completely solve an equation that still has 2 variables in it. There are unlimited solutions.
- You can solve an equation that has only 1 variable.
- Elimination Strategy:

1. Make sure you have OPPOSITE COEFFICIENTS on either x or y.
2. Add the 2 equations together so that one of the variables gets "eliminated."
3. Solve for the first variable, then plug the answer back in to find the second

Try these:
 $-3 x+y=6$
 $3 x+2 y=30$

$10 x-y=5$
$-6 x+y=-9$
$4 x-2 y=30$
$-4 x+6 y=-38$

When you show me a correct answer + work for one of the problems, you may volunteer to put it on the board.

Ok...when would adding equations together help me???
$9 a+10 b=16$
$+4 a-6 b=28$
$13 a+4 b=44$

$$
\begin{array}{r}
x+y=20 \\
+2 x+2 y=40 \\
\hline \mathbf{3 x}+\mathbf{3 y}=\mathbf{6 0}
\end{array}
$$

$$
\begin{gathered}
\mathbf{p}+\mathbf{q}=4 \\
+\quad \mathbf{p}-\mathbf{q}=-27 \\
\hline
\end{gathered}
$$

$$
-4 m+2 n=5
$$

$$
2 \mathbf{p}=-23 \quad \$-4=11
$$

$$
+?+7=12
$$

$$
\overline{\$+?+3=23}
$$

$5 n=15$
$5 x+6 y=37$

$$
\begin{array}{r}
5 x+2 y=29 \\
\hline 10 x+8 y=66
\end{array}
$$

Obvious question:

- What happens if you don't have opposite coefficients???

$$
\begin{array}{r}
x+y=20 \\
+2 x+2 y=40 \\
\hline
\end{array}
$$

$9 a+10 b=16$
$+4 a-6 b=28$

$$
\begin{array}{r}
5 x+6 y=37 \\
+\quad 5 x+2 y=29 \\
\hline
\end{array}
$$

Another legal math move...

- You are allowed to multiply an entire equation by any number.

$$
\begin{aligned}
& 2 x=10 \\
& 3(2 x=10) \\
& 6 x=30 \\
& \frac{1}{5} x+3=\frac{2}{5} x-4
\end{aligned}
$$

What could I multiply here?

$$
\begin{array}{r}
5 x+6 y=37 \\
+\quad 10 x-2 y=29 \\
\hline
\end{array}
$$

To eliminate " x ", you could multiply the first equation by -2

- You would have -10x and 10x

OR

To eliminate " y ", you could multiply the second equation by 3

- You would have $6 y$ and $-6 y$

What would you multiply them by to make them opposites???

$$
\begin{array}{r}
3 \text { and }-1 \\
\hline 3 \text { and }-3
\end{array}
$$

What would you multiply them by to make them opposites???

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& \frac{1}{1} \text { and }-5 \\
& \frac{5}{5} \text { and }-5
\end{aligned}
$$

What would you multiply them by to make them opposites???

3 and $\mathbf{3}$

$$
\bullet-1
$$

3 and -3

What would you multiply them by to make them opposites???

2 and 6

$$
\frac{-3}{-6 \text { and } 6}
$$

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& -5 \text { and } \mathbf{- 1 0} \\
& 0-2 \\
& 10 \text { and }-10
\end{aligned}
$$

What would you multiply them by to make them opposites???

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& -4 \text { and } 6 \\
& \stackrel{-3}{12} \text { and }-12
\end{aligned}
$$

Don't write, just watch:

$6 \mathbf{a}+\mathbf{b}=\mathbf{1 5} \longrightarrow 6 a+b=15$
$2(-3 \mathbf{a}+4 \mathbf{b}=6) \longrightarrow \frac{-6 a+8 b=12}{9 b=27}$
and the rest is the same...

Example: Multiplying One Equation

$-2 x+4 y=8 \longrightarrow-2 x+4 y=8$

$$
4(3 x-y=3) \longrightarrow \frac{12 x-4 y=12}{10 x}=20
$$

$$
(2,3)
$$

$$
\begin{array}{r}
x=2 \\
\text { Find y: }-2 x+4 y=8 \\
-2(2)+4 y=8 \\
-4+4 y=8 \\
4 y=12 \\
y=3
\end{array}
$$

Try it!
$x+4 y=5$
$x+2 y=1$

Homework:

- 30 Minutes of ALEKS
+ make some progress on your packet!!!

