Warmup 12/(Nisha's birthday)

Make sure you have a whiteboard, marker, and eraser inside your desk
$\left\{\begin{array}{ll}26 \\ 6\end{array}\right) y=15 \rightarrow 2(6)+y=15$

1. Solve using elimination:

$$
\frac{1+x-y=3}{\frac{3 x}{3}}=\frac{18}{3}
$$

2. Explain why you would NOT want to add the equations together to solve the system $\left\{\begin{array}{c}3 x-4 y=18 \\ 2(-5 x+2 y=-4)\end{array}\right.$
3. Instead of adding the equations together right away, what would be a good first step in the system from \#2?

$$
\text { Multiply the bottom equation by } 2 \text {. }
$$

Plan for the Week

- Monday: Finish Elimination
- Tuesday: Review all 3 methods of solving systems
- QUIZ WEDNESDAY OR THURSDAY
- Review for Midterm after that

Warning:

- I WILL NOT be accepting the packet late. If you are not done by Friday, you will need to turn in what you have.

MAIN STRATEGIES:

- Graphing: Graph both equations and see where they intersect!
- Substitution: If (y = stuff), plug in the "stuff" for the y and go from there
- Elimination: Make sure you have opposite coefficients on a variable, then add the equations together

Don't write, just watch:

$6 \mathbf{a}+\mathbf{b}=\mathbf{1 5} \longrightarrow 6 a+b=15$
$2(-3 \mathbf{a}+4 \mathbf{b}=6) \longrightarrow \frac{-6 a+8 b=12}{9 b=27}$
and the rest is the same...

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{c}5 x-2 y=1 \\ 2 x+2 y=612\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\cdot\left\{\begin{array}{c}
2(5 x-2 y=1) \\
4 x+4 y=12
\end{array} \rightarrow \begin{array}{c}
10 x-4 y=2 \\
4 x+4 y=12
\end{array}\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{c}3 x+11 y=-35 \\ -x+3 y=5\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\cdot\left\{\begin{array}{c}3 x+11 y=-35 \\ 3(-x+3 y=5)\end{array} \rightarrow \begin{array}{c}3 x+11 y=-35 \\ -3 x+9 y=15\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\cdot\left\{\begin{array}{c}-4 x+2 y=18 \\ 12 x-2 y=-34\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{c}3 x+y=2 \\ 3 x-2 y=32\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\left\{\begin{array}{l}
2(3 x+y=2) \\
3 x-2 y=32
\end{array} \rightarrow^{6 x+2 y=4} \begin{array}{c}
x-2 y=32
\end{array}\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\cdot\left\{\begin{array}{c}
3 x+y=2 \\
-1(3 x-2 y=32)^{3}-3 x+2 y=-32
\end{array}\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\left\{\begin{array}{l}x+4 y=20 \\ x-6 y=15\end{array}\right.$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\cdot\left\{\begin{array} { c }
{ x + 4 y = 2 0 } \\
{ - 1 (x - 6 y = 1 5) }
\end{array} \rightarrow \left\{\begin{array}{c}
x+4 y=20 \\
-x+6 y=-15
\end{array}\right.\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\left\{\begin{aligned}
2 x+4 y & =8 \\
-3 x-3 y & =-9
\end{aligned}\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?

$$
\cdot\left\{\begin{array}{c}
3(2 x+4 y=8) \\
2(-3 x-3 y=-9)
\end{array} \rightarrow \begin{array}{c}
6 x+12 y=24 \\
-6 x-6 y=-18
\end{array}\right.
$$

What do you do when you CAN'T Eliminate right away???

- How could you make it so that you have opposite coefficients?
$\cdot\left\{\begin{array}{c}5 x+2 y=8 \\ 4 x-5 y=13\end{array}\right.$

Example: Multiplying One Equation

$-2 x+4 y=8 \longrightarrow-2 x+4 y=8$ $4(3 x-y=3) \longrightarrow 12 x-4 y=12$ 10x = 20

Try it! (Notes or whiteboard)

$$
\begin{aligned}
& x+4 y=5 \\
& x+2 y=1
\end{aligned}
$$

Example: Multiplying BOTH Equations

$3(-5 x+3 y=2) \longrightarrow-15 x+9 y=6$ $5(3 x-2 y=-2) \longrightarrow 15 x-10 y=-10$

$$
-1 y=-4
$$

$$
\begin{gathered}
y=\emptyset \\
\text { Find x: } 3 x-2 y=-2 \\
3 x-2(4)=-2 \\
3 x-8=-2 \\
3 x=6^{+8} \\
x=2
\end{gathered}
$$

Try these...

Multiplying Both

$$
\begin{gathered}
4(-5 x+3 y=7) \\
3(4 x-4 y=-12) \\
-20 x+12 y=28 \\
12 x-12 y=-36 \\
\left.-\frac{811}{-8}, 4\right)=-\frac{8}{-8} \\
x=1 \\
-5(1)+3 y=7 \\
-5+3 y=7 \\
3 x=12 x=4
\end{gathered}
$$

Story Problem!

- The sum of Nate \& Anne's ages is 59. The difference of their ages is 5 . Nate is older.
a) Write a system of equations that represents this situation.
b) Solve the system and say what the solution represents.

$$
\begin{aligned}
& \left\{\begin{array}{l}
N+A=59 \\
N-A=5
\end{array}\right. \\
& \quad N=32, A=27
\end{aligned}
$$

Nate is 32 years old, Anne is 27 years old

Story problem

- Henry gets paid for doing chores. Last week, he did 2 loads of laundry and 3 loads of dishes, and his parents paid him $\$ 12$. The week before, he did 7 loads of laundry and 6 loads of dishes, and his parents paid him \$33. How much does Henry earn for doing each type of chore?

$$
\begin{aligned}
-2(2 L+3 D & =12) \\
7 L+6 D & =33
\end{aligned}
$$

$$
\left\{\begin{aligned}
-4 L-6 D & =-24 \\
7 L+6 D & =33 \\
3 L & =9
\end{aligned}\right.
$$

$$
\begin{gathered}
2(3)+3 D=12 \\
6+3 D=12 \\
3 D=6 \\
D=2
\end{gathered}
$$

Doing the laundry is \$3, doing the dishes is $\$ 2$.

Story problem

- There are 14 total people at the Easter gathering adults and children. Each child found 4 Easter eggs and each adult found 3 Easter eggs. All together, 48 eggs were found. How many adults and children were at the gathering?

$$
-\left\{\begin{array} { r l }
{ 3 (A + C = 1 4) } \\
{ 3 A + 4 C = 4 8 }
\end{array} \longrightarrow \left\{\begin{array}{rl}
-3 A-3 C & =-42 \\
3 A+4 C & =48 \\
C & =6 \\
A & =8
\end{array}\right.\right.
$$

There were 6 children and 8 adults.

Homework

Elimination Worksheet

