## **Story Problems: Elimination**

## **Review: Solve by Substitution:**

1) Karen is twice as old as Lori. Three years from now, the sum of their ages will be 42. How old is Karen now?

## **Review: Solve by Graphing:**

- 2) A student has to buy graph paper and printer paper. The printer paper costs \$2 a pack, while the graphing paper costs \$3 a pack. She wants to buy at least 6 packs of paper but wants to spend at most \$27.
- a. Write a system of inequalities for the situation.
- b. Graph the solution to the right.
- c. How many packs of printer paper and graph paper can the student buy to meet all criteria?



## **Elimination Story Problems**

3) Arnold and Gerald have 98 footballs all together. The difference in Arnold's and Gerald's number of footballs is 32. Arnold has more footballs. Write a system of equations to represent this situation, then solve it to figure out how many footballs each of them had.

| and         | be bought some notebooks and some folders for school. He bought 11 items all together. Each notebook cost \$4.00 each folder cost \$1.00, and Joe spent \$26 total. Write a system of equations to represent this situation, then solve it gure out how many of each item he bought. |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -           | ne cost of 8 muffins and 2 quarts of milk is \$18. The cost of 3 muffins and 1 quart of milk is \$7.50. Write a system of ations to represent this situation, then solve it to figure out how much each item costs.                                                                  |
| <u>Revi</u> | <u>lew Problem</u>                                                                                                                                                                                                                                                                   |
| 6)          | The population of a town can be modeled by the function $P(t) = 20,696(0.9974)^t$ , where $t$ is the number of years that have passed since the year 2000. Which statement is true about the population of the town for each year since 2000?                                        |
|             | It has been decreasing by 0.26% each year.                                                                                                                                                                                                                                           |
|             | It has been decreasing by 0.0026% each year.                                                                                                                                                                                                                                         |
|             | It has been increasing by 0.9974% each year.                                                                                                                                                                                                                                         |
|             | It has been increasing by 99.74% each year.                                                                                                                                                                                                                                          |
| 7)          | The change in the population of fruit flies can be modeled by the equation $P(t) = 3(1.50)^t$ , where $t$ is time in days. Which statement describes the change in the population of fruit flies?  A 1.50% decrease daily                                                            |

® 1.5% increase daily© 50% increase dailyD 150% decrease daily