Created by Lazarius Gaebler
Warmup 12/ (\# of sides on an octagon \# of sides on a square)

1. Draw a coordinate plane (it doesn't have to be super complicated) and graph the equation $8 x+2 y=16$.
2. What are the three main strategies you can use to solve a system of equations?
3. Go back to your notes page on Elimination.

THIS WEEK:
MONDAY: Elimination TUESDAY: Story Problems WEDNESDAY: Review Systems THURSDAY: Systems Test FRIDAY: Benchmark on Computers

Speciat Announcement:

- There is only 30 more minutes of ALEKS due this 9 weeks.
- This will be due on the LAST day before winter break. (I would rather you focus on studying for the Midterm this weekend)
- Tonight, I will calculate the progress scores. If you don't like your progress score, you can do extra between now and the end of the 9 weeks to improve it.
- You can't completely solve an equation that still has 2 variables in it. There are unlimited solutions.
- You can solve an equation that has only 1 variable.
- Elimination Strategy:

1. Make sure you have opposite coefficients on a variable
2. Add the 2 equations together so that one of the variables gets "eliminated."
3. Solve for the first variable, then plug the answer back in to find the second

Ok...when would adding equations together help me???

$$
\begin{aligned}
& 9 a+10 b=16 \\
& x+y=20 \\
& +4 a-6 b=28 \\
& 13 a+4 b=44 \\
& +2 x+2 y=40 \\
& 3 x+3 y=60 \\
& p+q=4 \\
& +p-q=-27 \\
& 2 \mathrm{p} \quad=-23 \quad \$-4=11 \\
& -4 m+2 n=5 \\
& +?+7=12 \\
& +4 m+3 n=10 \\
& \$+?+3=23 \\
& 5 n=15 \\
& 5 x+6 y=37 \\
& +5 x+2 y=29 \\
& 10 x+8 y=66
\end{aligned}
$$

Obvious question:

- What happens if you don't have opposite coefficients???

$$
\begin{array}{r}
x+y=20 \\
+2 x+2 y=40 \\
\hline
\end{array}
$$

$9 a+10 b=16$
$+4 a-6 b=28$

$$
\begin{array}{r}
5 x+6 y=37 \\
+\quad 5 x+2 y=29 \\
\hline
\end{array}
$$

Another legal math move...

- You are allowed to multiply an entire equation by any number.

$$
\begin{aligned}
& 2 x=10 \\
& 3(2 x=10) \\
& 6 x=30 \\
& \frac{1}{5} x+3=\frac{2}{5} x-4
\end{aligned}
$$

What could I multiply here?

$$
\begin{array}{r}
5 x+6 y=37 \\
+\quad 10 x-2 y=29 \\
\hline
\end{array}
$$

To eliminate " x ", you could multiply the first equation by -2

- You would have -10x and 10x

OR

To eliminate " y ", you could multiply the second equation by 3

- You would have $6 y$ and $-6 y$

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& 3 \text { and }-1 \\
& \hline 3 \text { and }-3
\end{aligned}
$$

What would you multiply them by to make them opposites???

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& \frac{1}{1} \text { and } \mathbf{- 5} \\
& \frac{5}{5} \text { and }-5
\end{aligned}
$$

What would you multiply them by to make them opposites???

$$
3 \text { and } \mathbf{3}
$$

3 and -3

What would you multiply them by to make them opposites???

2 and 6

$$
\frac{-3}{-6 \text { and } 6}
$$

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& -5 \text { and } \mathbf{- 1 0} \\
& 0-2 \\
& 10 \text { and }-10
\end{aligned}
$$

What would you multiply them by to make them opposites???

What would you multiply them by to make them opposites???

$$
\begin{aligned}
& -4 \text { and } 6 \\
& \bullet 3 \\
& \hline 12 \text { and }-12
\end{aligned}
$$

Don't write, just watch:
$6 \mathbf{a}+\mathbf{b}=15 \longrightarrow 6 a+b=15$
$2(-3 \mathbf{a}+4 b=6) \longrightarrow \frac{-6 a+8 b=12}{9 b=27}$
and the rest is the same...

Example: Multiplying One Equation

$-2 x+4 y=8 \longrightarrow-2 x+4 y=8$
$4(3 x-y=3) \longrightarrow \frac{12 x-4 y=12}{10 x}=20$

$$
(2,3)
$$

$$
\begin{array}{r}
x=2 \\
\text { Find } y:-2 x+4 y=8 \\
-2(2)+4 y=8 \\
-4+4 y=8 \\
4 y=12 \\
y=3
\end{array}
$$

Tryit!

$$
\begin{aligned}
& x+4 y=5 \rightarrow \quad x+4 y=5 \\
& \begin{aligned}
&-2(\mathbf{x}+\mathbf{2 y}=\mathbf{1}) \rightarrow \frac{-2 x-4 y}{}=-2 \\
& \frac{-1 x}{-1}=\frac{3}{-1}
\end{aligned} \\
& \frac{x=-3}{\frac{\begin{array}{l}
-3+4 y=5 \\
\frac{+3}{}+3 \\
\frac{4 y}{4}=\frac{8}{4} \quad y=2
\end{array}}{(-3,2)}}
\end{aligned}
$$

Example: Multiplying BOTH Equations

$3(-5 x+3 y=2) \longrightarrow-15 x+9 y=6$ $5(3 x-2 y=-2) \longrightarrow 15 x-10 y=-10$

$$
\begin{gathered}
-1 y=-4 \\
y=4
\end{gathered}
$$

$$
\text { Find } x: 3 x-2 y=-2
$$

$$
(2,4)
$$

$$
\begin{gathered}
3 x-2(4)=-2 \\
3 x-8=-2 \\
3 x=6 \\
x=2
\end{gathered}
$$

HOMEWORK

- Elimination Worksheet

