YOU HAVE 15 MINUTES OF PLT!!!

- Get your homework out I am still checking for it during this time.
- Also, get a whiteboard/marker/eraser
- Ask me homework questions now if any of it was confusing!!!
- I NEED ONE TABLE TO VOLUNTEER TO STAPLE PAPERS FOR ME!!!

WARMUP 12/ (# OF T'S IN "TENNESSEE TITANS")

	adde adde	ağı ağı ağı
adda adda		200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200		201 201 201 201 201 201

Is this an arithmetic or geometric sequence?

• Write the recursive rule for the sequence:

HW CHECK

TABLE OF CONTENTS

Domain & Range	p. 10
Slope	p. 11
Slope WITHOUT a graph	p. 12
Slope-Intercept Form	р. 13
Standard Form	p. 14
Point-Slope Form	p. 15
Solving Linear Inequalities	р. 16
Exponent Rules	p. 17
Exponent Rules 2: Power to a Power	p. 18
Linear vs. Exponential	p. 19
Average Rate of Change	p. 20
Exponentials with Percents	p. 21
Compound Interest	p. 22
Intro to Sequences, Recursive Rules	p. 23

BACK TO THIS PAGE

...

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$$a_1 = 4$$

 $a_n = a_{n-1} + 5$

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$a_{1} = 4$ $a_{n} = 5 \cdot a_{n-1}$

4, 20, 100, 500

ANOTHER WAY TO WRITE RECURSIVE RULES...

I0, I6, 22, 28, ... FIRST TERM = I0 NEXT TERM = CURRENT TERM + 6

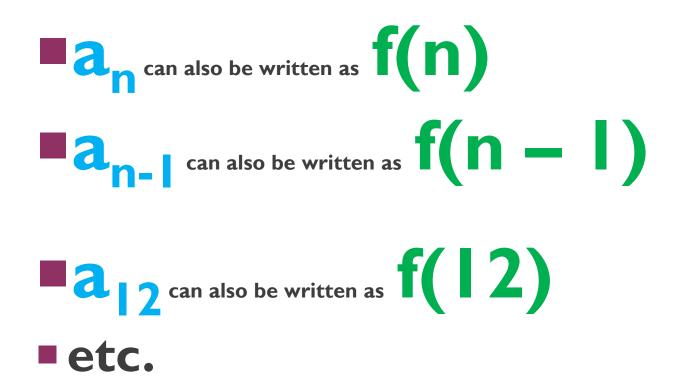
$$a_1 = 10$$

 $a_{n+1} = a_n + 6$

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$$a_1 = 4$$

 $a_{n+1} = a_n + 8$


WHAT ARE THE FIRST FOUR TERMS OF THE SEQUEN DEFINED BY THE RECURSIVE RULE?

 $a_{1} = 4$ $a_{n+1} = 3 \cdot a_{n}$

4, 12, 36, 108

ALTERNATE NOTATION FOR SEQUENCES...

Although subscript notation is the most common way to write sequences, you can also use function notation.

Write the recursive rule for the sequence. Use function notation!

3, 23, 43, 63, ... f(1) = 3;f(n) = f(n - 1) + 20

Write the recursive rule for the sequence. <u>Use function notation.</u>

6, I2, 24, 48, ... f(I) = 6; f(n) = 2•f(n − I)

Write the recursive rule for the sequence.

1/2, 1/8, 1/32, 1/128, ...

```
f(I) = \frac{1}{2};
f(n) = \frac{1}{4} \cdot f(n - I)
```

Margaret adopted 5 cats from the shelter. Each year, she adopts 3 more cats. Let f(1) = 5 represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after *x* years?

A.
$$f(x) = 3 \cdot f(x+1)$$

B. $f(x+1) = 3 \cdot f(x)$
C. $f(x) = f(x+1) + 3$
D. $f(x+1) = f(x) + 3$

1. Describe, using words, what each of these expressions mean.

- I. a₁₄ The I4th term
- 2. a_n The "nth" term (current term)
- 3. a_{n-1} Previous term
- 4. f(n + l)Next term
- 5. n Position number of the current term
- 6. f(l) lst term
- 7. What is the difference between "n" and "f(n)"? Explain.
 n is the position number of the term.
 f(n) is the actual value of the term.

WRITE A RECURSIVE RULE FOR THE FIBONACCI SEQUENCE

I, I, 2, 3, 5, 8, ... f(1)= 1 f(2) = 1 f(n)= f(n-1) + f(n-2) for n>2

TABLE OF CONTENTS

Domain & Range	p. 10
Slope	p. 11
Slope WITHOUT a graph	p. 12
Slope-Intercept Form	p. 13
Standard Form	p. 14
Point-Slope Form	р. 15
Solving Linear Inequalities	p. 16
Exponent Rules	p. 17
Exponent Rules 2: Power to a Power	p. 18
Linear vs. Exponential	p. 19
Average Rate of Change	p. 20
Exponentials with Percents	p. 21
Compound Interest	p. 22
Intro to Sequences, Recursive Rules	p. 23
Explicit Rules for Sequences	p. 24

...

Find the 10th term of the sequence:

10, 12, 14, 16, ...

 4th term is 16, need to add 2 six more times

10th term = 28

Find the 9th term of the sequence:

70, 65, 60, 55, 50, ...

30

Find the indicated term of the arithmetic sequence.

Find a_{25} : $a_1 = -5$; d = -2

-53

Find the indicated term of the arithmetic sequence.

The 8th term: $a_1 = 11; d = 3$

