YOU HAVE I5 MINUTES OF PLT!!!

- Get your homework out - I am still checking for it during this time.
- Also, get a whiteboard/marker/eraser
- Ask me homework questions now if any of it was confusing!!!
- I NEED ONE TABLE TO VOLUNTEER TO STAPLE PAPERS FOR ME!!!

WARMUP I2/ (\# OF T'S IN "TENNESSEE TITANS")

- Is this an arithmetic or geometric sequence?
- Write the recursive rule for the sequence:

HW CHECK

TABLE OF CONTENTS

Domain \& Range p. 10
Slope p. 11
Slope WITHOUT a graph p. 12
Slope-Intercept Form p. 13
Standard Form p. 14
Point-Slope Form p. 15
Solving Linear Inequalities p. 16
Exponent Rules p. 17
Exponent Rules 2: Power to a Power p. 18
Linear vs. Exponential p. 19
Average Rate of Change p. 20
Exponentials with Percents p. 21
Compound Interest p. 22
Intro to Sequences, Recursive Rules p. 23

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BYTHE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=a_{n-1}+5
\end{gathered}
$$

$4,9,14,19$

WHAT ARE THE FIRST FOUR TERMS OFTHE SEQUENCE DEFINED BYTHE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=5 \cdot a_{n-1}
\end{gathered}
$$

4, 20, I00, 500

ANOTHER WAY TO WRITE RECURSIVE RULES...

- I 0, I 6, 22, 28, ...
- FIRSTTERM = | 0

■ NEXTTERM = CURRENTTERM + 6
$-a_{1}=10$
$-a_{n+1}=a_{n}+6$

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n+1}=a_{n}+8
\end{gathered}
$$

$$
4,12,20,28
$$

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUEN DEFINED BYTHE RECURSIVE RULE?

$$
\begin{aligned}
a_{1} & =4 \\
a_{n+1} & =3 \cdot a_{n}
\end{aligned}
$$

$$
4,12,36,108
$$

ALTERNATE NOTATION FOR SEQUENCES...

- Although subscript notation is the most common way to write sequences, you can also use function notation.
$-a_{n}$ momomemen. $f(n)$

- etc.

Write the recursive rule for the sequence. Use function notation!

$$
\begin{aligned}
& \mathbf{3 , 2 3}, \mathbf{4 3}, \mathbf{6 3}, \ldots \\
& f(1)=3 ; \\
& f(n)=f(n-1)+20
\end{aligned}
$$

Write the recursive rule for the sequence. Use function notation.

6, I2, 24, 48, ...
$\mathrm{f}(\mathrm{I})=6$;
$f(n)=2 \cdot f(n-I)$

Write the recursive rule for the sequence.

$$
\begin{aligned}
& \mathbf{I} / \mathbf{2}, \mathbf{I} / \mathbf{8}, \mathbf{I} / \mathbf{3 2}, \mathbf{I} / \mathbf{I} \mathbf{2 8}, \ldots \\
& f(I)=\frac{1}{2} ; \\
& f(n)=\frac{1}{4} \cdot f(n-I)
\end{aligned}
$$

Margaret adopted 5 cats from the shelter. Each year, she adopts 3 more cats. Let $f(1)=5$ represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?
A. $f(x)=3 \cdot f(x+1) \quad$ C. $f(x)=f(x+1)+3$
B. $f(x+1)=3 \cdot f(x)$ D. $f(x+1)=f(x)+3$

।. Describe, using words, what each of these expressions mean.
I. a_{14} The $14^{\text {th }}$ term
2. a_{n} The "nth" term (current term)
3. a_{n-1} Previous term
4. $f(n+I)$ Next term
5. \mathbf{n} Position number of the current term
6. $f(I) I^{\text {st }}$ term
7. What is the difference between " n " and " $f(n)$ "? Explain.
n is the position number of the term. $f(n)$ is the actual value of the term.

WRITEA RECURSIVE RULE FOR THE FIBONACCI SEQUENCE

$$
\begin{gathered}
\square \mid, I, 2,3,5,8, \ldots \\
f(1)=1 \\
f(2)=1 \\
f(n)=f(n-1)+f(n-2) \text { for } n>2
\end{gathered}
$$

TABLE OF CONTENTS

Domain \& Range p. 10
Slope p. 11
Slope WITHOUT a graph p. 12
Slope-Intercept Form p. 13
Standard Form p. 14
Point-Slope Form p. 15
Solving Linear Inequalities p. 16
Exponent Rules p. 17
Exponent Rules 2: Power to a Power p. 18
Linear vs. Exponential p. 19
Average Rate of Change p. 20
Exponentials with Percents p. 21
Compound Interest p. 22
Intro to Sequences, Recursive Rules p. 23
Explicit Rules for Sequences p. 24

Find the $10^{\text {th }}$ term of the sequence:

$$
|0,|2,|4,| 6, \ldots
$$

- $4^{\text {th }}$ term is 16 , need to add 2 six more times
$10^{\text {th }}$ term $=28$

Find the $9^{\text {th }}$ term of the sequence:

70, 65, 60, 55, 50, ...

30

Find the indicated term of the arithmetic sequence.

Find $a_{25}: a_{1}=-5 ; d=-2$
-53

Find the indicated term of the arithmetic sequence.

The 8th term: $a_{1}=I I ; d=3$

32

