Created by Mr. Lischwe

WARMUP 1/(Reciprocal of $\frac{1}{8}$)

1. Expand: $8f^3$.

2. If I take 2^{30} and **double** it, what do I get? Write your answer as a power.

3. Evaluate both: $(-2)^6$ and $-(2^6)$.

2 VOLUNTEERS

• 1 to collect corrections

• 1 to collect extension

Table of Contents (2nd Semester)
p. 1 Exponent Basics (1.2)

Negative bases

Powers of -2... $(-2)^1 = -2$ $(-2)^2 = 4$ $(-2)^3 = -8$ $(-2)^4 = 16$ $(-2)^5 = -32$ $(-2)^6 = 64$ A negative number to an odd power is negative.
A negative number to an even power is positive.

Do we really need the parentheses?

(-3)² VS. -3²

IF THERE ARE NO PARENTHESES, YOU EVALUATE THE POWER FIRST AND THEM MAKE IT NEGATIVE, BECAUSE THE NEGATIVE SIGN IS NOT CONNECTED TO THE EXPONENT.

IMPORTANT: $(-3)^2$ is 9 -3^2 is the same as $-(3^2)$ which is -9

Practice

- 1. Simplify: $(-10)^4 = (-10) \cdot (-10) \cdot (-10) \cdot (-10) = 10,000$
- $= -(5 \cdot 5) = -25$ $= \left(\frac{3}{2}\right) \left(\frac{3}{2}\right) \left(\frac{3}{2}\right) = \frac{3 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2} = \frac{27}{8}$ 3. Simplify: $\left(\frac{3}{2}\right)^3$
- $= 9 \cdot 4^2 = 9 \cdot 16 = 144$ 4. Evaluate $9x^2$ when x = 4.
- 5. Evaluate $-a^6$ when a = 2. $= -(2)^6 = -64$ 6. Evaluate c^2 when c = -31. $= (-31)^2 = 961$
- Is the value of $(-84)^{63}$ positive or negative? Explain how you know. Negative; any negative number to an odd power is negative.

Homework

- p. 19 (1-3, 5, 7, 9-12)
- NO CALCULATOR!
- (9-12 are challenging: be careful!!!)

Table of Contents (2nd Semester)

- p. 1 p. 2 Exponent Basics (1.2)
 - Multiplying and Dividing Powers (1.3)

Multiplying & Dividing Powers

Objective:

Use exponent rules to simplify expressions

How could I solve this?

ACTIVITY: LEARN & TEACH

- There are two important rules to learn today.
- Half the tables will learn one rule and half the tables will learn the other
- o Then I will pair tables together and each table will teach the other table their rule

THE RULES...

$\underline{\textbf{Multiplying Powers with the same base}}$

o Keep the base, add the exponents

$\underline{\textbf{Dividing Powers with the same base}}$

o Keep the base, subtract the exponents