Warmup $10 /\left(\frac{28}{2}+\frac{28}{4}+\frac{28}{7}+\frac{28}{14}+\frac{28}{28}\right)$

No calculator allowed!!!

1) Guess: what do you think 7^{7} is?
2) Guess: what do you think 3^{20} is?
3) Guess: what do you think 2^{0} is?
4) Guess: what do you think 4^{-2} is?

Going over the Quiz: End of class if time!

Simplifying \& Interpreting Expressions p. 1
Solving Equations p. 2
Fractions \& Story Problems p. 3
Equations with No Solution or Infinite Solutions p. 4
Inequalities p. 5
Compound Inequalities p. 6
Solving for a Variable p. 7
What is a Function? p. 8
Continuous or Discrete p. 9
Domain \& Range p. 10
Slope p. 11
Slope WITHOUT a graph p. 12
Slope-Intercept Form p. 13
Standard Form p. 14
Point-Slope Form p. 15
Solving Linear Inequalities p. 16
Exponent Rules p. 17

Vocab

exponent

power
"squared" = to the $2^{\text {nd }}$ power
"cubed" = to the 3 rd power

What is the number "out in front" called?

$7 x^{3}$

Coefficient

Evaluate means "find the value of"...

Evaluate the following:

1. $5^{4} \quad 5 \cdot 5 \cdot 5 \cdot 5 \quad 625$
2. $2^{7}+2^{2} 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2+2 \cdot 2 \rightarrow 128+4 \rightarrow 132$
3. $(-3)^{4}-3 \cdot-3 \cdot-3 \cdot-38$
4. $(-4)^{4}-4 \cdot-4 \cdot-4 \cdot-4$

What is the difference here?

$(-3)^{2}$	vs.	-3^{2}
1		
$-3 .-3$		$-\left(3^{2}\right)$
		\downarrow
		$(3 \cdot 3)$
		\downarrow
		-9

IMPORTANT

-When you plug a negative number in for x always put it in parentheses!!!

Ex: Plug in -2 into x^{2} and it would be
$(-2)^{2}$ NOT -2^{2}

Evaluate the following

1. x^{3} for $x=-2 \quad(-2)^{3} \quad-8$
2. x^{5} for $x=3 \quad 3^{5} \quad 243$
3. -5^{2}

$$
-\left(5^{2}\right)
$$

$$
-25
$$

4. $(-2)^{7}$

Finding a pattern

- Find a pattern and use it to complete the table:

Exponential Form	Standar d Form
2^{5}	32
2^{4}	$162 \div 2$
2^{3}	$8 \div 2$
2^{2}	$42 \div 2$
2^{\prime}	$22 \div$
2^{0}	12
2^{-1}	$\frac{1}{2}$
2^{-2}	$\frac{1}{4}$
2^{-3}	年

Finding a pattern

- Find a pattern and use it to complete the table:

Exponential Form	Standard Form
3^{5}	243
3^{4}	81
3^{3}	27
3^{2}	9
3^{1}	$3 \div 3$
3^{0}	$\frac{1}{1}$
3^{-1}	$\frac{1}{3}$
$\frac{1}{9}$	
$3-2 \div 3$	
3^{-3}	efc.

The Rule:

Zero Exponents:

- Anything to the zero power is I!

Examples

1) 90
2) k^{0}
3) $\left(\frac{8 x^{3} y^{2}}{0.27 a b c}+12.5 q\right)^{0}$
4) $\frac{a^{6}}{a^{6}}$

Examples

$$
\begin{aligned}
& 1.9^{0} \\
& \text { 2. } k^{0}
\end{aligned}
$$

3. $\left(\frac{3}{8} q\right)^{0}$
4. $(5 x)^{0}$ (1)
5. $5 x^{0}$ 5.1 $\rightarrow 5$

Examples - Zero Exponents

The Rule:

Negative Exponents:

Rule: $x^{-n}=\frac{1}{x^{n}}$

- Negative exponent: I over the same power with a positive exponent

Basically...

,NEGATIVE EXPONENTS = DIVIDING!!!
» Any time you expand a power, there is really an "invisible 1" being multiplied by everything.
$3^{4}=2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

$$
\text { The }{ }^{\text {coinvisilble }]^{20}}
$$

» POSITIVE EXPONENTS:

$>$ Are 1 TIMES the base that many times
$>2^{4}=1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

» NEGATIVE EXPONENTS:

$>$ Are 1 DIVIDED BY the base that many times
$>2^{-4}=1 \div 2 \div 2 \div 2 \div 2$
$=\frac{1}{2 \cdot 2 \cdot 2 \cdot 2}$
$=\frac{1}{2^{4}}$
» ZERO EXPONENTS:
$>$ Are the 1 not multiplied or divided by anything
$>2^{0}=1$

Evaluate:

1) $4^{-2} \rightarrow \frac{1}{4^{2}} \rightarrow \frac{1}{16}$
2) $(-2)^{-3} \rightarrow \frac{1}{(-2)^{3}} \rightarrow \frac{1}{-8}$
3) $10^{-3} \rightarrow \frac{1}{10^{3}} \rightarrow \frac{1}{1000}$
4) $2^{-4} \rightarrow \frac{1}{2^{4}} \rightarrow \frac{1}{16}$
5) $(-7)^{-1} \rightarrow \frac{1}{(-7)^{\prime}}=-\frac{1}{7}$

- Write each using negative exponents:

6) $\frac{1}{8^{3}} \quad 8^{-3}$
7) $\frac{1}{c^{5}} \quad c^{-5}$
8) $\frac{1}{16} \quad 4^{-2}$ or 2^{-4} or 16^{-1}
9) $\frac{1}{27} \quad 3^{-3}$ or 27^{-1}

Simplify:

10) $x^{-2} \rightarrow \frac{1}{x^{2}}$
II) $\frac{1}{x^{-2}} \rightarrow x^{2}$
11) $a^{-3} \rightarrow \frac{1}{a^{3}}$
12) $\frac{1}{a^{-3}} \rightarrow a^{3}$

Homework

Worksheet

