Created by Mr. Lischwe

Warmup I0/
$$\left(\frac{28}{2} + \frac{28}{4} + \frac{28}{7} + \frac{28}{14} + \frac{28}{28}\right)$$

No calculator allowed!!!

- 1) Guess: what do you think 7⁷ is?
- 2) Guess: what do you think 3²⁰ is?
- 3) Guess: what do you think 2⁰ is?
- 4) Guess: what do you think 4⁻² is?

Going over the Quiz: End of class if time!

Simplifying & Interpreting Expressions	p.1
Solving Equations	p.2
Fractions & Story Problems	p.3
Equations with No Solution or Infinite Solutions	p.4
Inequalities	p.5
Compound Inequalities	p.6
Solving for a Variable	p.7
What is a Function?	p. 8
Continuous or Discrete	p. 9
Domain & Range	p. 10
Slope	p. 11
Slope WITHOUT a graph	p. 12
Slope-Intercept Form	p. 13
Standard Form	p. 14
Point-Slope Form	p. 15
Solving Linear Inequalities	p. 16
	•
Exponent Rules	p. 17

Vocab

"squared" = to the 2nd power "cubed" = to the 3rd power

What is the number "out in front" called?

Evaluate means "find the value of"...

Evaluate the following:

3.
$$(-3)^4$$
 -3. -3. -3. -3

4.
$$(-4)^4$$
 -4. -4. -4 /256

What is the difference here?

$$(-3)^2$$
 $-3.-3$

$$\begin{array}{cccc}
-3^{2} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

IMPORTANT

When you plug a negative number in for x always put it in parentheses!!!

Ex: Plug in -2 into x^2 and it would be $(-2)^2$ NOT -2^2

Evaluate the following

1.
$$x^3$$
 for $x = -2$

2.
$$x^5$$
 for $x = 3$ 3^5

3.
$$-5^2$$
 $-(5^2)$ $\sqrt{-25}$

4.
$$(-2)^7$$

Finding a pattern

Find a pattern and use it to complete the table:

Exponential Form	Standar d Form
25	32
24	16
23	82-2
22	42:2
21	22:2
20	1 2:2 etc.
2-1	1/2
2-2	<u> </u>
2-3	3

Finding a pattern

Find a pattern and use it to complete the table:

Exponential Form	Standard Form
35	243
34	81
3 ³	27
3 ²	9 > 3
31	3 2
30	1 2+3 etc.
3-1	1, 2.3 etc.
3-2	4
3-3	127

The Rule:

Zero Exponents:

Anything to the zero power is I!

Examples

3)
$$\left(\frac{8x^3y^2}{0.27abc} + 12.5q\right)^0$$

4)
$$\frac{a^6}{a^6}$$

Examples

4.
$$(5x)^0$$

5.
$$5x^0$$
 5.1 \rightarrow 5

Examples – Zero Exponents

The Rule:

Negative Exponents:

Rule:
$$x^{-n} = \frac{1}{x^n}$$

Negative exponent: I over the same power with a positive exponent

Basically...

• NEGATIVE EXPONENTS = DIVIDING!!!

» Any time you expand a power, there is really an "invisible 1" being multiplied by everything.

$$3^4 = 1 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

» POSITIVE EXPONENTS:

> Are 1 TIMES the base that many times

$$> 2^4 = 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$

» NEGATIVE EXPONENTS:

> Are 1 DIVIDED BY the base that many times

$$> 2^{-4} = 1 \div 2 \div 2 \div 2 \div 2$$

$$=\frac{1}{2\cdot 2\cdot 2\cdot 2}$$

$$=\frac{1}{2^4}$$

» ZERO EXPONENTS:

> Are the 1 not multiplied or divided by anything

$$> 2^0 = 1$$

Evaluate:

$$1) 4^{-2} \rightarrow 4^{2} \rightarrow 16$$

2)
$$(-2)^{-3}$$
 $\rightarrow (-2)^3$

3)
$$10^{-3} \rightarrow (0^3)$$

Write each using negative exponents:

6)
$$\frac{1}{8^3}$$
 9^{-3}

7)
$$\frac{1}{c^5}$$
 c^{-5}

8)
$$\frac{1}{16}$$
 4^{-2} or 2^{-4} or 16^{-1}

9)
$$\frac{1}{27}$$
 3^{-5} or 27^{-1}

Simplify: 10)
$$x^{-2} \rightarrow \stackrel{\smile}{\times}^2$$

$$| | | \frac{1}{x^{-2}} \rightarrow x^2$$

12)
$$a^{-3} \rightarrow \frac{1}{\alpha^{5}}$$

$$13) \frac{1}{a^{-3}} \rightarrow \alpha^{5}$$

Homework

Worksheet