Created by Kimia Eghbali

Warmup (The time at night when people

 make a wish)지 In 1951, there were 256 fish in a pond. In 1952, there were 352 fish in the pond.

1. If the population of fish is growing linearly, how many fish lived in the pond in 1955?

$$
\begin{gathered}
352-256=96 \text { fish increase per year } \\
352+3(96)=640 \text { fish }
\end{gathered}
$$

2. If the population of fish is growing exponentially, how many fish lived in the pond in 1955?

$$
\begin{gathered}
\frac{352}{256}=1.375, \text { so } 37.5 \% \text { increase per year } \\
352 \cdot 1.375^{3} \approx 915 \text { fish }
\end{gathered}
$$

An exponential function of the form $f(x)=a b^{x}$ passes through the points $(0,-3)$ and $(5,-96)$. What would be the rule for the function?

$$
\text { A } f(x)=-2^{x}
$$

(B) $f(x)=-32^{x}$
c. $f(x)=-3(2)^{x}$

- $f(x)=-3(32)^{x}$

Quiz Tuesday

Exponential Growth and Decay

Compound Interest

Exponent Rules, continued.

COPY:

Compound Interest
 $A=P\left(1+\frac{r}{n}\right)^{n t}$
 A represents the balance after t years.
 P represents the principal, or original amount.
 r represents the annual interest rate expressed as a decimal.
 n represents the number of times interest is compounded per year.
 t represents time in years.

Write a compound interest function that would give the total amount of money after " t " years.

$\$ 15,000$ invested at a rate of $\mathbf{4 . 8 \%}$ compounded monthly.

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{12 t} \\
& =15,000\left(1+\frac{0.048}{12}\right)^{12 t} \\
& \quad=15,000(1.004)^{12 t}
\end{aligned}
$$

$\$ 15,000$ invested at a rate of $\mathbf{4 . 8 \%}$ compounded monthly

How much will you have after 2 years?

$$
\begin{array}{rlrl}
A=P\left(1+\frac{r}{n}\right)^{12 t} & A & =15,000(1.004)^{12(2)} \\
=15,000\left(1+\frac{0.048}{12}\right)^{12 t} & & =15,000(1.004)^{24} \\
& =15,000(1.004)^{12 t} & & \approx 16,508.22
\end{array}
$$

Write a compound interest function to model each situation. Then find the balance after the given number of years.

\$1200 invested at a rate of 3.5%

 compounded quarterly; 4 years$$
\begin{array}{ll}
A=P\left(1+\frac{r}{n}\right)^{n t} & A \\
=1200(1.00875)^{4(4)} \\
=1,200\left(1+\frac{0.035}{4}\right)^{4 t} & =\mathbf{1 2 0 0}(1.00875)^{16} \\
=\mathbf{1 , 2 0 0}(1.00875)^{4 t} & \approx 1379.49
\end{array}
$$

Compound Interest

Billy puts $\$ 10,000$ in a savings account.
The interest rate for his bank is $.8 \%$ compounded quarterly.
π Write an equation to model this situation.
$f(t)=10,000(1.002)^{4 t}$

7. How much will he have in his account in five years?
\$10,407.69

CHECK HOMEWORK

Write a compound interest function to model each situation. Then find the balance after the given number of years.

$\$ 4000$ invested at a rate of 3% compounded monthly; 8 years

$$
\begin{array}{lrl}
A=P\left(1+\frac{r}{n}\right)^{n t} & A=4,000(1.0025)^{12(8)} \\
=4,000\left(1+\frac{0.03}{12}\right)^{12 t} & =4,000(1.0025)^{96} \\
=4,000(1.0025)^{12 t} & & \approx 5083.47
\end{array}
$$

Compound Interest

Kiptyn has $\$ 5000$ on his credit card statement that he has not paid off. His credit card company charges 15% interest compounded monthly.

त Write an equation to model this situation. $\mathrm{K}(\mathrm{t})=5000(1.0125)^{12 \mathrm{t}}$
7 How much will he owe in three years? \$7819.72
7. How much more is this than the amount he would have paid if he had not procrastinated his payment?

Compare and Contrast

- Bob wants to put $\$ 1,000,000$ in the bank to gain interest for five years. He can't decide which bank to put his money in.
- Who Wants to be a Millionaire? Bank gives 16% interest compounded annually.
- Ke\$ha Bank gives 16% interest compounded quarterly.
- Piggy Bank gives 16% interest compounded monthly.

1. Before you calculate anything, which bank do you think Billy should put his money in?

Write an equation for each bank
How much will Billy have in each bank account after five years?

Exponent Rules, cont.

Solve this equation.

$$
\begin{gathered}
2^{3 x}=2^{6} \\
x=2
\end{gathered}
$$

Exponent Rules, cont.

Solve this equation.

$$
\begin{gathered}
3^{3 x}=27 \\
x=1
\end{gathered}
$$

Compare and Contrast

- Bob wants to put $\$ 1,000,000$ in the bank to gain interest for five years. He can't decide which bank to put his money in.
- Who Wants to be a Millionaire? Bank gives 16% interest compounded annually
- Ke\$ha Bank gives 16% interest compounded quarterly.
- Piggy Bank gives 16% interest compounded monthly.
- Earl's Bank gives 16% SIMPLE interest.

1. Predict: Will Earl's bank be better than all, worse than all, or somewhere in the middle?
2. Calculate the amount Bob will have after 5 years in Earl's bank.

Exponent Rules, cont.

Solve this equation.

$$
\begin{gathered}
2^{3 x+1}=2^{10} \\
x=3
\end{gathered}
$$

Exponent Rules, cont.

Solve this equation.

$$
\begin{gathered}
4^{x-5}=64 \\
x=8
\end{gathered}
$$

Exponent Rules, cont.
Solve this equation.

$$
\begin{gathered}
5^{x+1}=125 \\
x=2
\end{gathered}
$$

Exponent Rules, cont.
Solve this equation.

$$
\begin{gathered}
3^{x-6}=27 \\
x=9
\end{gathered}
$$

Homework
Worksheet

Exponent Rules, cont.

Solve this equation.

$$
\begin{gathered}
6^{2 x-1}=36 \\
x=1.5
\end{gathered}
$$

Exponent Rules, cont.

Challenge!
Solve this equation.
$2^{x+4}=8^{x}$
$x=6$

