Warmup 11/ (XVII)

<u>Mental Monday</u>

Estimate: How many cheeseballs are in the container?

A number that is too high: _____

A number that is too low: ____

Your guess: _____

HW Review: Exponential Graphs

Linear or Exponential?

linear

f(x) = 25x + 25

Linear or Exponential?

Exp

$f(x) = 25^{x}$

Intro: Percent Increase & Decrease

□ Marvin has \$400. He increases his money by 10% each year.

DISCUSS: DO YOU THINK THIS IS LINEAR OR EXPONENTIAL???

The more money you have, the more 10% would be. So it's not a constant rate of change, and it can't be linear.

But why is it exponential??? Let's find out...

Percent Increase: A "shortcut"

- One way to add 3% to a number is to find 3% and then add that to the original number.
- However, is there a way you can add 3% all in one step???
- To add 3% to any number, you can multiply it by 1.03.
- The "1" takes into account the original number. The ".03" adds the extra 3%.

- If Marvin is increasing his money by 10% each year, he is multiplying by 1.1 each year.
- When you add (or subtract) a percent, you are actually multiplying. This is why percent increase/decrease functions are exponential.
- □ 10% increase for 5 years: 400•].[•[.[•[.[•[.[•[.]•].]•].]⁵
- 10% increase for x years: 400 ·1.1*

Table of Contents

Simplifying & Interpreting Expressions	p.1
Solving Equations	p.2
Fractions & Story Problems	p.3
Equations with No Solution or Infinite Solutions	p.4
Inequalities	p.5
Compound Inequalities	р.6
Solving for a Variable	р.7
What is a Function?	p. 8
Continuous or Discrete	р. 9
Domain & Range	p. 10
Slope	p. 11
Slope WITHOUT a graph	p. 12
Slope-Intercept Form	p. 13
Standard Form	p. 14
Point-Slope Form	p. 15
Solving Linear Inequalities	p. 16
Exponent Rules	p. 17
Exponent Rules 2: Power to a Power	p. 18
Linear vs. Exponential	р. 19
Average Rate of Change	p. 20
Exponentials with Percents	p. 21
	_

Exponential Growth Functions

Write an Expression for the Situation.

Annual sales for a company are \$149,000 and are increasing at a rate of 25% per year.

149,000 - 1.25*

Write an Expression for the Situation

The original value of a painting is \$1400, and the value increases by 9% each year.

1400 · 1.09 ×

Write an Expression for the Situation

The cost of tuition at a college is \$12,000 and is increasing at a rate of 6% per year.

[2000 · 1.06*

A condo in Austin, Texas, was worth \$80,000 in 1990. The value of the condo increased by an average of 3% each year. Write a function to model this situation. Then find the value of the condominium in 2005.

 $y = 80,000(1.03)^{\times}; $124,637$

Twelve students at a particular high school passed an advanced placement test in 2000. The number of students who passed the test increased by16.4% each year thereafter. Write a function to model this situation. Find the number of students who passed the test in 2004.

$y = 12 (1.164)^{\times}$; 22

Interpret the equation.

- If x is the number of months that have gone by after it was bought, the value of a baseball card is given by the function f(x) = 5(1.125)^x.
- Use the equation to describe what is happening with the value of the baseball card. The original value is \$5 and the value increases by 12.5% each year.

Science Application!

- In the absence of predators, the natural growth rate of rabbits is 4% per year. A population begins with 100 rabbits. The function f(x) = 100 (1.04)× gives the population of rabbits in x years.
 - About how long will it take the population of rabbits to double? reach 200 100.1.04" ≈ 194

About 18 years

Wally's Warehouse was founded in 2001. In 2004, there were 216 employees that worked there. In 2005, there were 324 employees that worked there. $\frac{324}{216} = 1.5 50 50\%$

- If the number of employees is increasing Year
 <u>exponentially</u>, how many employees will
 there be in 2006?
 37.4 + 1.9 =
- 2. How many employees were there at the start in 2001? $64 \leftarrow \frac{216}{15^3}$
- 3. Write an exponential equation that models the number of employees over the years. $y=64(1.5)^{\times}$

Exponential Decay

The fish population in a local stream is decreasing at a rate of 3% per year. The original population was 48,000. Write a function to model this situation. Find the population after 7 years.

y = 48,000 (0.97)[×]; 38,783

The population of a small Midwestern town is 4500. The population is decreasing at a rate of 1.5% per year. Write a function to model this situation. Then find the number of people in the town after 25 years.

y = 4500(0.985)[†]; 3084

Real Life Application!

Ms. Bolus purchased her car for \$11600. It is <u>depreciating</u> at a rate of 12% per year. Mr. Lischwe purchased his car for \$9700. It is <u>depreciating</u> at a rate of 7% per year. Write a function to model both situations.

Bolus	$f(x) = 11600(.88)^{\times}$
Lischwe	$f(x) = 9700(.93)^{\times}$

Real Life Application!

-How much is each car worth 2 years from now? B: \$8983.04 L: \$8389.53

-In how many years will Mr. Lischwe's car be worth more than Ms. Bolus' car? 4 years

Bolus
$$f(x) = 11600(.88)^{\times}$$
Lischwe $f(x) = 9700(.93)^{\times}$

Homework

