Created by Anish Krishnan

Warmup $11 /(0!\cdot \sqrt{100})$

- If you were to write an exponential function in each of the following cases, what would the growth factor be?

1. Increasing by 24% per year
2. Decreasing by 24% per year

GET A
Increasing by 4.5% per year
CALCULATOR!!
4. Decreasing by 3.33% per year
5. Decreasing by 99% per year
6. Tripling every year
7. Increasing by 200% every year

Review Homework

The population of Pittsburgh was about 12,600 in 1820 . Between 1820 and 1840 the population grew exponentially, increasing by about 70\% each decade.
a. Construct an exponential function in the form $f(t)=a b^{t}$ that models the population t decades after 1820 .
b. According to your model, what was the population of Pittsburgh in 1825? What about 1839 ?
c. According to your model, by what percentage did the population increase between 1826 and 1836 ?

A Midwestern town had a population of 7500 in 2010. If the town is growing at a rate of 2% per year, then how many people did it have in 2002?

Suppose a town's population grows by 100%
A Midwestern town had a population of every year. If it had 6000 people in 2010, 7500 in 2010 . If the town is growing at a rate of 2% per year, then how many people did it have in 2002?

$$
\begin{aligned}
& 7500=P(1.02)^{8} \\
& P=\text { about } 6401 \text { people }
\end{aligned}
$$

Wally's Warehouse was founded in 2001. In 2004, there were 216 employees that worked there. In 2005, there were 324 employees that worked there.

1. If the number of employees is increasing exponentially, how many employees will there be in 2006? 486
2. How many employees were there at the start in 2001? 64
3. Write an exponential equation that models the number of employees over the years. $y=64(1.5)^{x}$

The change in the population of fruit flies can be modeled by the equation $P(t)=3(1.50)^{t}$, where
t is time in days. Which statement describes the change in the population of fruit flies?
A 1.50% decrease daily
B 1.5% increase daily
c 50% increase daily
- 150% decrease daily

OBJECTIVE:

- Use exponential functions to model compound interest

Table of Contents
p. 8 Rate of Change
p. 9 Slope
p. 10 Slope-Intercept Form
p. 11 Standard Form
p. 12 Point-Slope Form
p. 13 Solving Linear Inequalities
p. 14 Negative Exponents, Multiplying \& Dividing Powers
p. 15 Power to a Power
p. 16 Which Would You Choose?
p. 17 Exponential Equations
p. 18 Exponential GRAPHS
p. 19 Real-World Exponential Functions
p. 20 Compound Interest

OBJECTIVE:
ם Use exponential functions to model compound interest

Simple Interest

- Simple Interest is always paid on only the initial amount.
- You deposit $\$ 500$ into a savings account. You will earn 3% interest per year. If we are using simple interest, how much money will you have in your bank account after 5 years?
- Simple interest is not very common.
-lf you take out a loan and you only pay interest on the original amount, the bank doesn't get as much money. Who can explain why?

COPY:

Compound Interest
$A=P\left(1+\frac{r}{n}\right)^{n t}$
A represents the balance after t years.
P represents the principal, or original amount.
r represents the annual interest rate expressed as a decimal.
n represents the number of times interest is compounded per year.
t represents time in years.

COPY:

Reading Math

For compound interest

- annually means "once per year" ($n=1$).
- quarterly means "4 times per year" ($n=4$).
- monthly means " 12 times per year" $(n=12)$.

Write a compound interest function to model each situation. Then find the balance after the given number of years.
\$1200 invested at a rate of $\mathbf{2 \%}$ compounded quarterly; 3 years.

$\$ 15,000$ invested at a rate of 4.8%

 compounded monthly; 2 years.$$
\begin{array}{ll}
A=P\left(1+\frac{r}{n}\right)^{12 t} & A=15,000(1.004)^{12(2)} \\
=15,000\left(1+\frac{0.048}{12}\right)^{12 t} & =15,000(1.004)^{24} \\
& \approx 16,508.22
\end{array}
$$

$=15,000(1.004)^{12 t} \quad$ The balance after 2 years is $\$ 16,508.22$.

Write a compound interest function to model each situation. Then find the balance after the given number of years.
$\$ 1200$ invested at a rate of 3.5% compounded quarterly; 4 years

$$
\begin{array}{ll}
A=P\left(1+\frac{r}{n}\right)^{n t} & A
\end{array}=\mathbf{1 2 0 0}(1.00875)^{4(4)}
$$

Homework
a Worksheet

