

Quizzes...

Objectives

- Review exponent basics
- Understand powers with negative BASES
- Understand powers with negative EXPONENTS
- Multiply powers with the same base
- Divide powers with the same base

What is the number "out in front" called?

Evaluate means "find the value of"...

Evaluate the following:
I. 5^{4}
2. $2^{7}+2^{2}$
3. $(-3)^{4}$
4. $(-4)^{4}$

IMPORTANT

- When you plug a negative number in for x always put it in parentheses!!!
- Ex: Plug in -2 into x^{2} and it would be $(-2)^{2}$ NOT -2^{2}

What is the difference here? $(-3)^{2} \quad$ vs. $\quad-3^{2}$

Evaluate the following
I. x^{3} for $x=-2$
2. x^{5} for $x=3$
3. -5^{2}
4. $(-2)^{7}$

IMPORTANT

- An expression that contains negative or zero exponents is not considered to be simplified. Expressions should be rewritten with only positive exponents.

The Rule:

Negative Exponents:
Rule: $x^{-n}=\frac{1}{x^{n}}$

- Negative exponent: I over the same power with a positive exponent

The Rule:

Zero Exponents:

- Anything to the zero power is I!

Examples

1) 90
2) k^{0}
3) $\left(\frac{8 x^{3} y^{2}}{0.27 a b c}+12.5 q\right)^{0}$
4) $\frac{a^{6}}{a^{6}}$

-

4^{-2}	$\frac{1}{16}$
2^{-3}	$\frac{1}{8}$
10^{-3}	$\frac{1}{1000}$
2^{-4}	$\frac{1}{16}$
7^{-1}	$\frac{1}{7}$

Examples - Try these in your head!!!

- Write each using negative exponents:
$\frac{1}{8^{3}} \quad \frac{1}{c^{5}} \quad \frac{1}{16} \quad \frac{1}{27}$

Discuss with your group

- How would you simplify these four to have ONE base and ONE exponent?

1. $2^{3} \cdot 2^{2}$
2. $h^{8} \cdot h^{10}$
3. $\frac{2^{5}}{2^{3}}$
4. $\frac{\mathrm{x}^{6}}{\mathrm{x}^{3}}$

Try it with numbers...
$2^{3} \cdot 2^{2}$
2^{6}
$\overline{2^{3}}$

Examples: Multiplying

Examples: Multiplying

1. $a^{45} \cdot a^{22}$
a^{67}
2. $6^{5} \cdot 6^{3}$
6^{8}
3. $x^{3} \cdot y^{5} \cdot y^{2} \cdot x$
$x^{4} \cdot y^{7}$
4. $12 j^{5} \cdot 3 j^{2}$
$12 \cdot j \cdot j \cdot j \cdot j \cdot j \cdot 3 \cdot j \cdot j$
$=36 j^{7}$

The Rules...
Multiplying Powers with the same base

- Keep the base, add the exponents

Dividing Powers with the same base

- Keep the base, subtract the exponents
I. $a^{45} \cdot a^{22}$

2. $6^{5} \cdot 6^{3}$
3. $x^{3} \cdot y^{5} \cdot y^{2} \cdot x$
4. $12 j^{5} \cdot 3 j^{2}$

Examples: Dividing

1. $\frac{a^{45}}{a^{22}}$
2. $\frac{6^{5}}{6^{3}}$
3. $\frac{x^{3} y^{5}}{x y^{2}}$
4. $\frac{12 j^{5}}{3 j^{2}}$
$>$

Examples: Dividing

$\begin{array}{ll}\text { 1. } \frac{a^{45}}{a^{22}} & a^{23} \\ \text { 2. } \frac{6^{5}}{6^{3}} & 6^{2}\end{array}$
3. $\frac{x^{3} y^{5}}{x y^{2}} \quad x^{2} \cdot y^{3}$
4. $\frac{12 j^{5}}{3 j^{2}}$
$\frac{12 \cdot j \cdot j \cdot j \cdot j \cdot j}{3 \cdot j \cdot j}$
$=4 j^{3}$

Careful...
$\frac{7 x^{5}}{7 x^{3}}$
$\frac{7^{5}}{7^{3}}$

Super-Crazy Example
Simplify:

$$
\frac{-2 a^{6} \cdot 6 b^{3} \cdot a \cdot 4 b^{5}}{18 b^{4} \cdot a^{5} \cdot 3 b^{2}}
$$

Helpful Hint

- If you are ever not sure about what to do, just expand it out!!!

