

HW Answers: p.593,601,609

p. 593	p. 601	p. 609
1) $141.4 \mathrm{in}^{3}$	5) $102.6 \mathrm{in}^{3}$	2) $904.8 \mathrm{yd}^{3}$
2) $103.4 \mathrm{~m}^{3}$	6) $15.9 \mathrm{~m}^{3}$	7) Volume is $268.1 \mathrm{in}^{3}$
3) 834.1 lb	7) $1608.5 \mathrm{~cm}^{3}$	107.2 seconds
(If you rounded before multiplying by 59 , its 831.9 lb)	8) $1338.3 \mathrm{~cm}^{3}$	8) $658.5 \mathrm{ft}^{3}$
4) $2580.3 \mathrm{~cm}^{3}$		

ALEKS DURING ENRICHMENT:

| $\frac{\mathbf{1}^{\text {st }} \text { Period }}{}$ | $\frac{\mathbf{5}^{\text {th }} \text { Period }}{\text { Joseph Garces }}$ |
| :--- | :--- |\quad Drew Bathon \(~\left(\begin{array}{ll}Cortez Gonzalez \& Ana Boero

Nani Harvell \& Troy Chumley

Connor Ickes -17 \& Makhyah Driver

May McDaniel \& Jahogany Ezelle

Hallie Pewitt \& Camryn Oliver

Josh Robertson \& Brieanna Owens

\& Caroline Price

\& Alexandra Suche\end{array}\right.\)

$6^{\text {th }}$ Period

Axel Gallagher
Salma Kailani
Viggo Pile
Jackson Powell
Aubrey Wurth
(All are 30 minutes)

Volume of a sphere

The volume of a sphere is $2 / 3$ of the cylinder it "fits" in.

- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot h\right)$
- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot 2 r\right)$
- $V($ sphere $)=\frac{4}{3} \pi r^{3}$

Spheres

Spheres:
$\circ V=\frac{4}{3} \pi r^{3}$

Prisms

Prisms have TWO bases that are connected by flat sides all around.

Prisms: \quad Volume $=($ Area of base) x height

- Rectangular Prism: $\quad V=(l w) \cdot h$
- Triangular Prism:
$\boldsymbol{V}=\left(\frac{1}{2} \boldsymbol{b} \boldsymbol{h}\right) \cdot \boldsymbol{h}$
$V=\left(\pi r^{2}\right) \cdot h$

Pyramids/Cones

Pyramids \& Cones have ONE base, and come to a point at the top.
3 pyramids $=1$ prism. 3 cones $=1$ cylinder.

FORMULAS REVIEW

$$
\begin{array}{|ll|}
\hline \text { Cones/Pyramids: Volume }=\frac{1}{3} \cdot(\text { Area of base }) \cdot \text { height } \\
\hline \text { - Rectangular Pyramid: } \quad V=\frac{1}{3} \cdot(l w) \cdot h \\
\text { - Cone } \quad V=\frac{1}{3} \cdot\left(\pi r^{2}\right) \cdot h
\end{array}
$$

Find the area of the shaded region.
One winter, Mr. Rogers built a birdhouse in his backyard. Mr. Rogers finished the main part of the birdhouse before it began to snow, but not the roof. The main part of the birdhouse is a right circular cylinder with a inner diameter of 6 inches and a height of 12 inches.

$$
V=\pi \cdot 3^{2} \cdot 12
$$

Diameter of big circle $=14$, radius $=7$

$$
V \approx 339
$$

Diameter of small circle $=8$, radius $=4$
$A=\pi(7)^{2}-\pi(4)^{2}$
$A=49 \pi-16 \pi$
$A=33 \pi$ (exact)
$A \approx 103.7$ in 2 (rounded)

If the snow completely filled the main part of the birdhouse, what would be the approximate volume, in cubic inches, of the snow? (Round your answer to the nearest whole number.)
A 226
(283
c 339

- 1357

Find the volume of the figure. Leave your answer as an exact answer (leave π in it)

Working backwards...

- Find the height of the cylinder.

Working backwards...

Homework

- Volume Worksheet

