Name: _____

Worksheet: Review Function Basics

For each problem:

Say whether or not the relationship is a function or not, and explain why.

1)	r	1		21			72
1)	Input	Output	2) (-4, 8); (6, 8); (0, 8); (-2.5, 8)	3)			
	-3	19			3 —		→ ⁴
	1	-5			5 ->		> 8
	6	-35			7		> 10
	1	-5) (>11
	9	-53					

4) Input = Meigs 8th grader; Output = Their student ID number

5) Input = Letter grade; Output = Meigs student who got that grade in math on their report card

Use the given functions to find each value. Do NOT use a calculator!

$$a(x) = -5x - 8$$
 $b(x) = 5(x + 2)$ $c(x) = \frac{x}{5} - 2$ $d(x) = 3x^2 - 36$ $e(x) = \frac{-x + 4}{2}$
6) b(10) 7) d(4) 8) a(-10)

FOR 11-13:

Write a rule in function notation to model the situation. Describe what the input and output represent.

11) At a vacation resort, you can rent a personal watercraft for \$20 per hour, plus an insurance charge of \$35.

12) Pedro is making chocolate chip cookies. He has a bag of chocolate chips that contains 250 chocolate chips. He is very particular about his cookies, so he makes sure that there are exactly 7 chocolate chips in each cookie. (For this one, your rule should calculate the **number of chocolate chips left in the bag**).

13) Same situation as #11, but this time, make your rule calculate the total number of chocolate chips used.