Warmup 9/(0. $\overline{\mathbf{9}}$)

What is the main rule to be able to tell if something is a function or not? Try to write it without looking at your notes.
Fill in the table with values that would make it not be a function.

Fill in the table with values that would make it be a function.

4) Function?

5) Function?

QUIZ TOMORROW!

- Graphs of stories
- Is it a function? Table/Graph/Situation
- Function Notation (Today)
- Write a function rule/identify input and output (Today)

Retake Forms...

- I have them now.
- It gives you the step-by-step process on there...
- Take Form
- Meet with Mr. Lischwe for corrections
- Decide on your retake date
- Turn in Form
- Do extra practice
- Take Retake
- Show improvement!

8 This graph is just plain wrong. How can Tom be in two places at once?

H

1 Tom ran from his home to the bus stop and waited. He realized that he had missed the bus so he walked home.

G

Would this be a function?

- Input $=$ student in this class
- Output = desk label of the student's assigned seat

Yes, each input has only 1 output.

WITH YOUR GROUP:

Decide whether each of the relationships are functions. EACH PERSON should be able to explain each one, so discuss well!!!
Input = Facebook user, Output = password
Input $=$ student, Output $=$ the student's hair color
Input = student in our class, Output = planet he/she lives on
Input $=$ word, Output $=\#$ of letters in the word
Input $=$ word, Output $=$ a letter that is in that word
Input $=$ month, Output $=\#$ of days in the month
Input $=\#$ of days in the month, Output $=$ month
Input $=$ date, Output $=$ temperature outside
Input = any integer, Output $=$ double that integer

$1,3,4,9$ are functions

2, 6 could be, depending on how you interpret the problem

Table of Contents
p. 1 Adding \& Subtracting, Equations \& Expressions
p. 2 Equation Story Problems
p. 3 Solving Equations with More than one Variable
p. 4 Solving Inequalities
p. 5 What is a Function?
p. 6 Function Notation

Function NAMES

- In math, we give each function rule a name. This name is simply a letter of the alphabet.
- Let's name these three functions:

1. Input $=$ state, Output $=$ letters in the state's name
2. Input $=$ month, Output $=\#$ of days in the month
3. Input = any integer, Output = double that integer notation

FUNCTION NOTATION

- Let's say the function "L" tells you how many letters are in a state's name.
- It's a mouthful to ask "What is the output of L if the input is "Iowa"?

What is $\mathbf{H}(10)$?

- What is $\mathbf{H}(44)$?
- What is $\mathbf{H}(302)$?
- What is H(-8.4)?

So instead, we use function notation. The function name goes first, then the input you want goes in parentheses after the letter.

- L(Iowa) = ?
- Here's how we would write the function:

Function Notation
This is the name of the
function

This is the variable (the input)

- Read: "f of x "
b(100) $=91$

MEANS:

"If you plug ' 100 ' into the function
'b', you get 91 "
The " 91 " is your answer. The
"b(100)" is just labeling your answer.
Like "x = 5"

Evaluating Functions

- Use the following functions:

	$\mathrm{x})=4 \mathrm{x}-2$	$b(x)=-9+x$	$c(x)=x^{2}+1$
1)	What is a(3)?	$\begin{aligned} & a(3)=4(3)-2 \\ & a(3)=12-2 \\ & a(3)=10 \end{aligned}$	
2)	What is $\mathrm{c}(-3)$?	$\begin{aligned} & c(-3)=(-3)^{2}+1 \\ & c(-3)=9+1 \\ & c(-3)=10 \end{aligned}$	
3)	What is $\mathrm{b}(100)$?	$\begin{aligned} & b(100)=-9+100 \\ & b(100)=91 \end{aligned}$	

$$
b(100)=91
$$

IMPORTANT

of(x) DOES NOT MEAN " f times x "

of(5) means "What do you get when you plug " 5 " into the function " f "?"

Evaluate the functions:
$\mathrm{r}(\mathrm{x})=-2 \mathrm{x}+8 \quad \mathrm{~s}(\mathrm{x})=3 \mathrm{x}^{2} \quad \mathrm{t}(\mathrm{x})=|\mathrm{x}-2|$

1. $\mathbf{S}(5)=75$
2. $t(5)=3$ VOLUNTEERS TO PUT THESE ON
3. $\mathbf{r}(-6)=20$ THE BOARD???
4. $\mathbf{t}(-4)=6$
5. $\mathbf{s}(-3)=27$

- Write a rule in function notation to model the situation. Describe what the input and output represent.
- Herb is buying pizzas. Each pizza costs $\$ 12$.

$$
c(x)=12 x
$$

Input: \# of pizzas Output: Total cost

Dependent \& Independent Variables

- What is the difference???
- Independent Variable: the input
- Dependent Variable: the output
- (The dependent variable depends on the independent variable!)
- Write a rule in function notation to model the situation. Describe what the input and output represent.
- There are 100 brownies on a tray. 2 brownies are eaten every minute.
$b(x)=100-2 x$

Input: minutes

Output: \# of brownies left OR \# of brownies eaten

- Write a rule in function notation to model the situation. Describe what the input and output represent.
- Willard has $\$ 150$ to spend on iTunes. He is downloading songs, each of which cost $\$ 1.29$.
$f(x)=150-1.29 x$
$f(x)=1.29 x$
Input: \# of songs downloaded
Output: amount of money spent (or amount of money he has left)
- Write a rule in function notation to model the situation. Describe what the input and output represent.
- A moving company charges $\$ 130$ for truck rental plus $\$ 1.50$ per mile driven.
$f(x)=130-1.50 x$

