Warmup 9/ (Area of a square with a side length of 3)

For 1 \& 2, select the correct graph and explain why you chose it.

1) A man takes a ride on a ferris wheel.

d)

A train pulls into a station and lets off its passengers.
2)
a)
b)

c)

d)

3) Draw a graph with an x-axis of "time" and a y-axis of "distance traveled" that would be impossible - that is, where Tom would be in 2 places at once.

Go over Graphing Stories WS

Table of Contents

p. 1 Converting Fractions and Decimals (1.1)
p. 2 Roots (1.8 \& 1.9)
p. 3 Solving x^{2} and x^{3} Equations (1.8)
p. 4 Rational vs. Irrational (1.1)
p. 5 What is a function?

YOU DO NOT NEED TO LABEL A NEW NOTES PAGE. THIS WILL BE A HANDOUT!!!

What is a Function?

Objectives:
-Introduce yourself to the VERY important math concept of a "function"
-Decide if a table, graph, or situation is or is not a function

Game: Guess My Rule

Would this be a fair rule?

Input
9
5
1
-4
5
27

Would this be a fair rule?

Input
10
Output
45
7
19.5
3
-0.5
6
13
10 45
-6
19

Would this be a fair rule?

Input	Output
1	-6
2	-3
3	2
5	18
7	42
10	93

Would this be a fair rule?

Input
5
2
97
-3.2
0

Output
13
13
13
13
13

Vocab

 IMPORTANT!- A function is a rule. Each input must only have one output.

-(It has to be "fair"!!!)

Rest of today:

- We will simply be asking the question "Is this a function???"
- We will do more practice later with trying to figure out what the rule is. But for now, all we care about is if the rule is FAIR or not.

Function?

x	y
3	6
5	10
5	12
8	14
12	18

No; the input " 5 " has more than one output.

Function?

x	y
-8	16
10	-20
1	-2
4	-8
1	-2

Yes; there is a repeated input, but the output is the same.

Function?

x	y
1	5
1	6
2	7
2	8
3	9

No; the inputs " 1 " and " 2 " have more than one output.

Function?

x	y
1	24
2	9
3	-6
4	-21
5	-36

Yes; each input has only one output.

Function?

x	y
1	-2
2	-2
3	-2
4	-2
5	-2

Yes; each input has only one output. (You can have the same output for multiple inputs!)

Function?

(2, 8); (-5, 9); (7, 9); (2,-4), (7, 4)

No; the input "2" has more than one output.

Function?

(1, 5); (8, 19); (4, 11); (-8, -13), (1, 5)

Yes, each input has only 1 output.

- Mapping Diagram:
- Express the relation (2,0), $(5,9),(-1,9),(-2,16)$ as a mapping diagram.

Function?

Yes, each input has only 1 output.

Function?

No; the input " 6 " has more than one output.

Function?

Yes, each input has only 1 output.

IS IT A FUNCTION?

One input \rightarrow Multiple outputs $=$ BAD

Multiple inputs \rightarrow one output $=$ OK

(There are several types of mathematical rules that can give you repeated outputs. For example, multiplying by zero then adding anything. Squaring a number. Taking the absolute value. And many, many more!)

Let's look at some graphs

now...

8 This graph is just plain wrong. How can Tom be in two places at once?

1 Tom ran from his home to the bus stop and waited. He realized that he had missed the bus so he walked home.

2 different times \rightarrow same location: does make sense!

Time

What is the input and output of this point?

> Input $=8$
> Output $=-3$

If the input is 6 , what's the output?

Output = 8

On a graph...

- " x " is the input, and " y " is the output.

