

Throwback Thursday!

□ Solve:
$$3(x-2) + 5 + 2x = 6x - (x-2)$$

 $3x - 6 + 5 + 7 \times 6 - 5 + 7 + 7$
 $5x - 1 = 5x + 7$

Solve and graph: -2 < -2x + 4 < 6 -9 < -4 < -4Solve for y : 6y + 3 = 2x -3-3 -3

- 1. What is the main rule to be able to tell if something is a function or not? Try to write it without looking at your notes.
- 2. Fill in the table with values that would make it **not** be a function.

3. Fill in the table with values that would make it be a function.

NOT A FUNCTION:

BY THE WAY...

- Just because there is no obvious pattern DOES NOT MEAN there can't be a mathematical rule!
- If each input has only one output, there is ALWAYS a possible mathematical rule, even if it's really complicated.

This equation happens to be

$$y = \frac{1}{12}x^4 - 2.5x^3 + \frac{311}{12}x^2 - 111.5x - 164$$

No; the input of "4" has multiple outputs

Function? (COPY THIS ONE FOR YOUR NOTES)

Function? (COPY THIS ONE FOR YOUR NOTES)

Rules for graphs of functions

ON A GRAPH:

The x-value (horizontal) is the INPUT and the y-value (vertical) is the OUTPUT.

To be a function, each x-value can only have one y-value.

No

No

Which are functions?

Add **five** points to the graph so that it would **not** be a function.

Add **five** points to the graph so that it **would** be a function.

Would this be a function?

Input = student in this class

Output = desk label of the student's assigned seat

Yes, each input has only 1 output.

WITH YOUR GROUP:

- Decide whether each of the relationships are functions. EACH PERSON should be able to explain each one, so discuss well!!!
- **1.** Input = Instagram account, Output = password
- 2. Input = password, Output = Instagram account
- 3. Input = student, Output = the student's current hair color
- 4. Input = student in our class, Output = planet he/she lives on
- 5. Input = state, Output = # of letters in the state's name
- 6. **Input = state, Output = a letter in the state's name**
- 7. Input = month, Output = # of days in the month
- 8. Input = # of days in the month, Output = month
- 9. Input = date, Output = temperature outside
- **10**. Input = any integer, Output = double that integer

1, 4, 5, 10 are functions

Function Notation

This is the name of the function This is the variable

• Read: "f of x"

Evaluating Functions

Use the following functions:

$$a(x) = 4x - 2$$

 $c(x) = x^2 + 1$

$$b(x) = -9 + x$$

a(3) = 4(3) - 2
a(3) = 12 - 2
a(3) = 10

What is
$$a(3)$$
?

2) What is c(-3)?

3) What is b(100)?

 $c(-3) = (-3)^2 + 1$ c(-3) = 9 + 1c(-3) = 10

b(100) = -9 + 100b(100) = 91

IMPORTANT

If f(x) DOES NOT MEAN "f times x"

f(5) means "What do you get when you plug "5" into the function "f"?"

b(100) = 91

MEANS:

"when I input 100 into the function "b" I get 91 as my output"

What does c(-3) = 10 mean?

MEANS:

"when I input -3 into the function "c" I get 10 as my output"

functions:	
s(x) = 3x ²	t(x) = x - 2

Homework

Worksheet