Warmup $9 /(\underline{7+7+7+7+7})$ Created by 7

Throwback Thursday!

\square Solve: $3(x-2)+5+2 x=6 x-(x-2)$
$3 x-6+5+2 x=6 x-x+2$

$$
5 x-1=5 x+2
$$

\square Solve and graph: $-2<-2 x+4<-4$

$$
\begin{aligned}
& \frac{-6}{-2}<-\frac{2 x}{-2}<\frac{2}{-2} \quad\left[\begin{array}{l}
3>x>-1 \\
3=2 x
\end{array} \quad \frac{\text { or }}{-1<x<3}\right. \\
& 3=1
\end{aligned}
$$

\square Solve for y : $\begin{array}{r}6 y+3 \\ -3 \\ \hline-3\end{array}$

1. What is the main rule to be able to tell if something is a function or not? Try to write it without looking at your notes.
2. Fill in the table with values that would make it not be a function.

\mathbf{x}	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{6}$
\mathbf{y}	8	3	-4	7	18

3. Fill in the table with values that would make it be a function.

$$
\begin{array}{llll|ll|}
\hline x & 0 & 2 & 4 & 6 & 6 \\
y & 2 & 18 & 6 & 3 \\
\hline
\end{array}
$$

NOT A FUNCTION:

NOT A FUNCTION:

FUNCTION:

x	y
-7	4
-6	4
-5	6
-4	6
-3	-2

BY THE WAY...

\square Just because there is no obvious pattern DOES NOT MEAN there can't be a mathematical rule!
\square If each input has only one output, there is ALWAYS a possible mathematical rule, even if it's really complicated.
\square This equation happens to be

$$
\begin{array}{|l|l|}
\hline x & y \\
\hline-7 & 4 \\
\hline-6 & 4 \\
\hline-5 & 6 \\
\hline-4 & 6 \\
\hline-3 & -2 \\
\hline
\end{array}
$$

$$
y=\frac{1}{12} x^{4}-2.5 x^{3}+\frac{311}{12} x^{2}-111.5 x-164
$$

Function?

Function?

Function? (COPY THIS ONE FOR YOUR NOTES)

Function? (COPY THIS ONE FOR YOUR NOTES)

Rules for graphs of functions

- ON A GRAPH:
- The x-value (horizontal) is the INPUT and the y-value (vertical) is the OUTPUT.
- To be a function, each x-value can only have one y-value.

Function?

No

Function?

Yes

Function?

Yes

Function?

No

Function?

Yes

Function?

No

Function?

No

Function?

No

Function?

Yes

Which are functions?

Add five points to the graph so that it would not be a function.

Add five points to the graph so that it would be a function.

Would this be a function?

\square Input = student in this class
\square Output = desk label of the student's assigned seat

Yes, each input has only 1 output.

WITH YOUR GROUP:

ㅁ Decide whether each of the relationships are functions. EACH PERSON should be able to explain each one, so discuss well!!!

1. Input = Instagram account, Output = password
2. Input $=$ password, Output $=$ Instagram account
3. Input $=$ student, Output $=$ the student's current hair
4. Input = student in our class, Output = planet he/she lives on
5. Input $=$ state, Output $=$ \# of letters in the state's name
6. Input $=$ state, Output $=$ a letter in the state's name
7. Input $=$ month, Output $=$ \# of days in the month
8. Input $=$ \# of days in the month, Output $=$ month
9. Input $=$ date, Output $=$ temperature outside
10. Input = any integer, Output = double that integer

1, 4, 5, 10 are functions

Function Notation

This is the name of the function

This is the variable

- Read: "f of x "

Evaluating Functions

\square Use the following functions:
$a(x)=4 x-2$

$b(x)=-9+x$

$$
c(x)=x^{2}+1
$$

$$
\begin{aligned}
& a(3)=4(3)-2 \\
& a(3)=12-2 \\
& \mathbf{a}(3)=10
\end{aligned}
$$

1) What is $a(3)$?
2) What is $c(-3)$?

$$
\begin{aligned}
& c(-3)=(-3)^{2}+1 \\
& c(-3)=9+1 \\
& c(-3)=10
\end{aligned}
$$

$$
b(100)=-9+100
$$

$$
b(100)=91
$$

3) What is $b(100)$?

IMPORTANT

qf(x) DOES NOT MEAN "f times $x^{\prime \prime}$

$\square f(5)$ means "What do you get when you plug "5" into the function "f"?"

b(100) = 91

MEANS:

"when I input 100 into the function "b" I get 91 as my output"

What does $\mathrm{c}(-3)=10$

 mean?
MEANS:

"when I input -3 into the function "c" I get 10 as my output"

Evaluate the functions:

$$
r(\underline{x})=-2 x+8 \quad s(x)=3 x^{2} \quad t(x)=|x-2|
$$

1. $\mathbf{s}(5)=75$
2. $t(5)=3$
3. $r(-6)=20$
4. $\mathbf{t}(-4)=6$
5. $s(-3)=27$

Homework

Worksheet

