Created by Erina Shin
Warmup 11/(8+9)
Get a calculator!!!

1. WHY is this sequence called an "arithmetic" sequence?
2. Give an example of a sequence that would NOT be arithmetic.
3. Write an explicit rule that would give the nth term of the sequence.
4. Use your rule to find the $100^{\text {th }}$ term.
10, 14, 18, 22, ...


## Explicit Rule

- Explicit rule: a rule that tells you how to get the nth term of the sequence without having to find the previous terms

Write the Explicit Formula for the Sequence
$15,12,9,6, \ldots$

$$
a_{n}=15-3(\mathrm{n}-1)
$$

Use your rule to find the $43^{\text {rd }}$ term.

## Word Problem Time!

A bag of cat food weighs 18 pounds on the first day. Each day afterwards, the cats are fed 0.5 pound of food.

1. Write an explicit rule to model the situation.
2. How much does the bag of cat food weigh after 30 days?
3. $a_{n}=18-.5(n-1)$
4. 3.5 pounds


## Word Problem Time!

Each time a truck stops, it drops off 250 pounds of cargo. After the first stop, it had a load of 2000 pounds.

1. Write an explicit rule to model the situation.
2. How much does the load weigh after the 5 th stop?
3. $a_{n}=2000-250(n-1)$
4. 1000 pounds


## Objective

Be able to interpret and create rules for Arithmetic and Geometric Sequences

## Geometric Sequences

- Geometric Sequence: When the terms in the sequence have a common ratio ( $r$ )
- (Basically, a sequence that is exponential)
- Can you give an example of a geometric sequence?


## Is it a geometric sequence?

- If so, give the common ratio r.

Find the indicated term of the geometric sequence.

8th term: 5, 10, 20, 40, ...

Find the indicated term of the geometric sequence.

9th term: 7, 21, 63, 189, ...

45,927

Find the indicated term of the geometric sequence.

The 25th term: $a_{1}=100 ; r=1.02$

## About 160.84

Find the indicated term of the geometric sequence.

6th term: 13, -26, 52, -104, ...

## -416

- The explicit formula for geometric sequences uses similar thinking to the formula for arithmetic sequences:
- "What is the first term, and how many times do I multiply by " $r$ " to get the $n$th term?"
- To get the nth term, you multiply by "r" $(n-1)$ times.
- In other words, you must multiply by $r^{n-1}$

Write the explicit formula of the
geometric sequence, then use it to find the given term.
$3,12,48,192, \ldots 5^{\text {th }}$ term

$$
\begin{aligned}
& a_{n}=3(4)^{n-1} \\
& a_{5}=3(4)^{4}=768
\end{aligned}
$$

## Homework: Half Sheet

