\qquad

Geometry Review

You must label the vertices of your image! All rotations are around the origin.

1) $(x, y) \rightarrow(x+7, y-5)$

2) A triangle was rotated 90° clockwise, and the image is shown below. Draw the original figure.

3) What steps would take the preimage to the image?

4) Rotate 180°

5) Reflect across y-axis, then across $y=x$

6) A triangle was rotated 270° counterclockwise, then translated two units down. Then it was rotated 90° clockwise and translated two units up. The image is shown. Draw the original. figure.

Which transformations would map the

${ }^{8)}$ rectangle onto itself? Select all that apply.

A. Reflection across the x-axis
B. Reflection across the y-axis
C. Reflection across the line $x=1$
D. Reflection across the line $y=1$
E. 180° rotation around the origin
F. 180° rotation around $(0,1)$
G. 360° rotation around the origin
H. Translation 4 units up, then a reflection across the line $y=3$
I. Translation 1 unit down, then a reflection across the x-axis
J. 180° rotation around the origin, then a translation of 2 units up.

Each sequence of transformations maps trapezoid \mathbf{A} ${ }^{9)}$ onto trapezoid B. Fill in the blanks.
a) Reflection across the x-axis followed by the translation (x, y) \rightarrow \qquad
b) 180° rotation around the origin followed by the translation $(\mathrm{x}, \mathrm{y}) \rightarrow$
c) 180° rotation around the point $(-3,5)$ followed by the translation $(\mathrm{x}, \mathrm{y}) \rightarrow$
d) Reflection across the line \qquad followed by a translation of 9 units to the right
e) Reflection across the line \qquad followed by a reflection across the line \qquad

Give the smallest degree of rotation so that the figure maps onto itself. Each figure is regular.
10)

11)

12) $F O U R$ is a parallelogram. Find $F R$.

Give the most specific name for each quadrilateral given only the information shown.
13)

14)

16) Challenge: Find all lines
of symmetry. Write the equation for each line in slope-intercept form.

