8) A figure lies in Quadrant II of a coordinate plane. The figure is transformed by first reflecting across the x-axis and then rotating 90° clockwise about the origin. In what quadrant will the image lie?

- (A) Quadrant I
- (B) Quadrant II
- © Quadrant III
- Quadrant IV

9) If ΔTRI ≅ ΔANG, which of the following congruence statements are true?

$$\bigcirc$$
 $\overrightarrow{TR} \cong \overrightarrow{AN}$

- **B** $\overline{T}I \cong \overline{AG}$
- © RI≅NG
- $\bigcirc \overline{TI} \cong \overline{NA}$
- $(E) \angle T \cong \angle A$
- $\bigcirc R \cong \angle N$
- G ∠I ≅ ∠G
- \bigcirc $\triangle A \cong \angle N$

In the triangles shown below, $\overline{AB} \cong \overline{XY}$, $\overline{AC} \cong \overline{XZ}$, and $\angle BAC \cong \angle YXZ$. Which rigid motions below may be combined to map $\triangle ABC$ onto $\triangle XYZ$?

- (A) A reflection across the x-axis
- (B) A reflection across the y-axis
- \bigcirc A reflection across the line y = x
- (D) A vertical translation
- (E) A horizontal translation

11) Given: $\overline{AB} \cong \overline{AC}$, M is the midpoint of \overline{BC} Prove: $\angle B \cong \angle C$

5.
$$\overline{AM} \cong \overline{AM}$$

- A Definition of midpoint
- B SAS congruence criterion
- **C** Corresponding parts of congruent triangles are congruent.
- D SSS congruence criterion
- E Definition of perpendicular bisector
- F Given
- **G** If a point is on the bisector of an angle, it is equidistant from the sides of the angle.
- H Reflexive property of congruence

1) What type(s) of symmetry does a regular octagon have? Can be more than one!

- (A) Line symmetry
- Rotational symmetry; with angles of rotation that are multiples of 30°
- © Rotational symmetry; with angles of rotation that are multiples of 45°
- Rotational symmetry; with angles of rotation that are multiples of 60°
- 4) What are the vertices of the image of the figure after the translation $(x, y) \rightarrow (x 2, y + 3)$?

- (-6, 5), (2, 4), (0, 0), (-5, -1)
- (-6, -1), (2, -2), (0, -6), (-5, -7)
- **©** (-2, 5), (6, 4), (4, 0), (-1, -1)
- **(D)** (-1, 0), (7, -1), (5, -5), (0, -6)

2) Complete the table, finding the smallest nonzero angle of rotational symmetry for each of the shapes described. Then write a generalization for a regular polygon with n sides.

Sides in regular polygon	Angle of rotational symmetry
3	120°
4	
5	
6	

5) What are the vertices of the image of the rectangle after a 90° counterclockwise rotation about the origin?

- **(A)** (5, -4), (1, -4), (1, -1), (5, -1)
- (-4, -3), (-4, 1), (-1, 1), (-1, -3)
- **©** (4, 5), (4, 1), (1, 1), (1, 5)
- **(D)** (-4, -5), (-4, -1), (-1, -1), (-1, -5)

Which of the following are the vertices of the image of the figure below under the translation $(x, y) \rightarrow (x + 4, y - 2)$?

- **(A)** (-1, 2) **(D)** (6, 3)
- **B** (-9, 6) **E** (1, -4)
- **©** (-2, 7) **F** (-7, 0)
- A triangle has vertices (4, -1), (-3, 0), and (7, 2). What are the vertices of the image of the triangle after a reflection across the y-axis?
 - **(A)** (-4, -1), (3, 0), (-7, 2)
 - **B** (4, 1), (-3, 0), (7, -2)
 - **©** (-4, 1), (3, 0), (-7, -2)
 - **(D)** (-1, 4), (0, -3), (2, 7)
- 7) A triangles with vertices (-3, 1), (1, 5), and (4, 1) is reflected across the *x*-axis. What are the vertices of the image?
 - (A) (1, -3), (5, 1), and (1, 4)
 - (B) (-3, -1), (1, -5), and <math>(4, -1)
 - **©** (3, 1), (-1, 5), and (-4, 1)
 - \bigcirc (-3, -1), (1, 3), and (4, -1)