1. $f(x)=2(3)^{x}$

$$
\begin{aligned}
& 2(3)^{x} y \\
& 2(3)^{y}=2(1)=2
\end{aligned}
$$

a. Predict: What do you think the graph will look like? SKETCH it below
b. Fill in the chart using the equation
c. Graph the points that you came up with and then connect them.

x	$f(x)$
-3	$2 / 27$
-2	$2 / 9$
-1	$2 / 3$
0	2
1	6
2	18
3	2×3
	54

d. Will the graph ever go below the x-axis? Why or why not?

e. Domain: \qquad all veal numbers \qquad
2. $f(x)=2(5)^{x}$
a. Predict: How will this graph be different from \#1?

SKETCH it below.
b. Fill in the chart using the equation
c. Graph the points that you came up with and then connect them.
d. Draw the asymptote.

x	$f(x)$
-3	$2 / 125$
-2	$2 / 25$
-1	$2 / 5$
0	2
1	10
2	50
3	250

GROWTH
e. Domain: \qquad All real \#s

Range:

3. $f(x)=2\left(\frac{1}{3}\right)^{x} \rightarrow$ same as $\div 3$ pattern
a. Predict: How will this graph be different from \#1? SKETCH it below.
b. Fill in the chart using the equation.
c. Graph the points that you came up with and then connect them.

x	$f(x)$
-3	54
-2	18
-1	6
0	2
1	$2 / 3$
2	$2 / 9$
3	$2 / 27$

d. Draw the asymptote.

e. Domain: \qquad Range: \qquad
4. $f(x)=-2(3)^{x}$
a. Predict: How will this graph be different from \#1? SKETCH it below.
b. Fill in the chart using the equation.
c. Graph the points that you came up with and then connect them.

x	$f(x)$
-3	$-2 / 27$
-2	$-2 / 9$
-1	$-2 / 3$
0	-2
1	-6
2	-18
3	-54

d. Draw the asymptote.

e. Domain:
 Range: \qquad

Reflection Questions:

1. How do the graphs of \#1 and \#4 look different? What caused this difference?
2. What caused the difference between the graphs of \#2 and \#3?
3. Will any of these functions ever be able to cross the x axis? Why or why not?
4. Write an exponential function that will cross the x-axis.
