

Objective Graph Systems of Equations and Inequalities

y = x + 3

What are the solutions to this equation?

Which (x, y) works for BOTH? x + y = 9 x - y = 1 (5, 4)(5.4) is the solution to this system of equations

Which
$$(x, y)$$
 works for BOTH?
 $x - y = 7$
 $xy = 30$
(10, 3)
(vo, 3) is the solution to this system of equations

Which (x, y) works for BOTH?

$$x + y = 10$$

 $2x + y = 12$
(2, 8)
(2, 8) is the solution to this system of equations

Essential question

•When will a system of two linear equations have infinitely many solutions?

When they are the same line

Essential Question • Why is the solution of a system of two equations represented by the point where the two graphs intersect?

Solution of System of Linear inequalities

•ALL of the ordered pairs that make all the inequalities in the system true.

Tell whether the ordered pair is a solution of
the given system (must make both true)
$$(1, 3); \begin{array}{l} \hat{l} & y \\ f & x+2 \\ \hat{l} & y > 4x-1 \end{array}$$

