A system of equations is: $\qquad$

To solve a system of equations, $\qquad$

## STRATEGY \#1 OF SOLVING SYSTEMS:

Graph both equations and find the point of intersection!
ESSENTIAL IDEA: $\qquad$

## Example 1:

$\left\{\begin{array}{c}y=-\frac{1}{3} x+4 \\ y=\frac{3}{2} x-7\end{array}\right.$


Solution: ( , )

## Example 3:

$$
\left\{\begin{array}{c}
y=-\frac{3}{4} x+7 \\
y=\frac{1}{2} x-3
\end{array}\right.
$$



Solution: ( , )

## Example 2:

$$
\left\{\begin{array}{c}
y=2 x-9 \\
y=-3 x+6
\end{array}\right.
$$



Solution: ( , )

## Example 4:

$$
\left\{\begin{array}{c}
y=x+3 \\
y=-\frac{1}{3} x-5
\end{array}\right.
$$

## Example 5:

$\left\{\begin{array}{c}y=-\frac{1}{4} x \\ y=-\frac{1}{4} x-3\end{array}\right.$


Solution: ( , )

Example 6:


Graph:
$x+y=8$


Example 7: The graphs of two equations are shown below, without the grid. Out of the four possible points below, determine the identities of points $P, Q$, and R. (Look at the ESSENTIAL IDEA again!)
$(9,0)$
$(8,4)$
$(4,10)$
$(6,16)$

## Graph:

$$
\overline{y+4}=\frac{1}{2} x
$$



To graph an equation that is NOT in slope-intercept form:

## Example 8:

$\left\{\begin{array}{c}x-y=3 \\ 2 x+5 y=20\end{array}\right.$


Solution: ( , )

Example 9:
$\left\{\begin{array}{l}y-3 x=8 \\ \frac{1}{4} x=y+3\end{array}\right.$


Solution: ( )

