

-10 -8 -6

Parallel lines have 10 Same slope

Draw an example of parallel lines. Give an equation for each of your lines.

Perpendicular lines have opposite vecipion slope.

What does this mean?

\*Note: The product of perpendicular line slopes is \_\_\_\_\_

Draw an example of perpendicular lines. Give an equation for each of your lines.

For each slope given, identify what slope the parallel and perpendicular line would have.

| slope          | parallel | perpendicular |
|----------------|----------|---------------|
| 4<br>-<br>3    | 1 3      | -3/4          |
| $-\frac{2}{5}$ | -25      | 5/2           |
| 5              | 5        | -75           |
| -1             | 1        | ١.            |
| 0              | 0        | undefined     |
| <u>a</u>       | Ė        | - %           |

Are the following lines parallel perpendicular or neither? How do you know?

1. 
$$y = 3x + 5$$
,  $y = -3x + 1$ 

2. 
$$y = -\frac{2}{3}x + 5$$
 ,  $y = \frac{3}{2}x - 8$ 

Neither

3. 
$$y = -x + 1$$
,  $y = x + 2$ 

4. 
$$y = 5x^3$$
,  $y = 4 + 5x^3$ 

Perp

Parallel

hat would lines that are neither parallel nor perpendicular look like?



Soanned by CamScanner

Write the equation of a line that is parallel AND a line that is perpendicular to a given line through the given point.



Method 2:  

$$y = -2x - 5, (-1, 4)$$

$$y = M \times + b$$

$$y = -2(-1) + b$$

$$y = -3 + b$$

$$y =$$

Choose which method you like best and do the next four problems. Find the equation of a line that is parallel AND one that is perpendicular.

1. 
$$y = \frac{3}{4}x - 2$$
, (0, 5)

PAR: 
$$y = \frac{3}{4}x + 5$$

3. 
$$\frac{7y}{7} = \frac{4x}{7} + \frac{1}{7}$$
, (28, 2)  $\frac{y=mx+b}{2} = \frac{4}{7}(28)+b$   
 $y = \frac{4}{7} \times + \frac{1}{7}$ 

$$2 = \frac{4}{7}(28)+b$$

$$2 = -\frac{7}{4}(28)+b$$

$$2 = -\frac{7}{4}(28)+b$$

$$2 = -\frac{7}{4}(28)+b$$

$$2 = -\frac{7}{4}(28)+b$$

$$3 = -\frac{7}{4}(28)+b$$

$$3 = -\frac{7}{4}(28)+b$$

$$4 = -\frac{7}{4}(28)+b$$

$$5 = -\frac{7}{4}(28)+b$$

$$4 = -\frac{7}{4}(28)+b$$

$$5 = -\frac{7}{4}(28)+b$$

$$4 = -\frac{7}{4}(28)+b$$

$$5 = -\frac{7}{4}(28)+b$$

$$5 = -\frac{7}{4}(28)+b$$

$$4 = -\frac{7}{4}(28)+b$$

$$5 = -\frac{7}{4}(28)+b$$

$$6 = -\frac{7}{4}(28)+b$$

$$7 = -\frac{7}{4$$

How can you show that JKLM is a parallelogram?

For a parallelogram, opposite sides are parallel.



2. 
$$y = -10x + 8$$
,  $(\frac{1}{2}, \frac{1}{2})$ 

PERP: 
$$y = \frac{1}{10} \times + \frac{9}{20}$$

4. 
$$\frac{6y + x = 120}{-x}$$
, (18, 24)  
 $\frac{6y = -\frac{x}{6} + \frac{120}{6}}{\frac{6}{6}}$   
 $y = -\frac{1}{6}x + 20$ 

PAR:  $y = -\frac{1}{6}x + 27$ 

PERP:  $y = \frac{1}{6}6x - 84$ 

How can you show this triangle is a right triangle?

Right triangles are triangles that are never wrong. ©



slope of AB:  $\frac{2}{3}$  slope of AC:  $-\frac{3}{2}$ 

AB and AC are perpendicular!

Scanned by CamScanner