Exponent Rules
After you solve these, come up with some rules that you discover about how to take a

$$
\begin{aligned}
& \begin{array}{l}
\text { power to a power. } \\
(x \cdot x \cdot x)^{4} \rightarrow(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x) \\
\left(x^{3}\right)^{4} \\
=x^{3} \cdot x^{3} \cdot x^{3} \cdot x^{3} \\
x^{10}
\end{array} a^{5} \cdot a^{5} \rightarrow a^{10} a^{5} p^{2}
\end{aligned}
$$

Taking a Power to a Power:
Keep the base 'multiply the exponents

Example:

1. $\left(x^{2}\right) x^{10}$
2. $\left(a^{4} b^{2}\right.$
$a^{8} b^{2}$
3. $\left(2 m^{3}\right)^{4}$
$(2 \cdot m \cdot m \cdot m)(2 \cdot m \cdot m \cdot m)(2 \cdot m \cdot m \cdot m)(2 \cdot m \cdot m m)$

4. $-2\left(m^{3}\right)^{-5}$

$$
-2 m^{-15} \rightarrow-2 \cdot \frac{1}{m^{15}} \rightarrow \frac{-2}{m^{18}}
$$

Now it's your

Example:

1. $(-2 y)^{3}$ and $-(2 y)^{3}$

2. $2\left(m^{3}\right)^{-4}\left(x^{2}\right)^{2}$
3. $\left(x^{2} y^{5}\right)^{2}\left(x^{3} y^{2}\right)^{-2}$
$x^{4} y^{6} x^{-6} y^{-4} \rightarrow x^{-2} y^{2}$
4. $2 a^{2} b^{3}\left(a^{3} b^{2}\right)^{-2}$
$2 a^{2} b^{3} a^{-2}\left(b^{-4}\right.$

5. $\left(3 x^{4}\right)^{5}$
6. $\left(16 a^{2} b^{2} c\right)^{2}$
7. $\left(\frac{2 m^{-3}}{v}\right)^{-4}$
8. $\left(\frac{4 g^{50}}{8 g^{30}}\right)^{2}$ Hint: Simplify a bit inside the parentheses first.

$$
\frac{g^{40}}{4}
$$

Real World:

1.) Find the perimeter and area of the square:
$5 a^{4}$
2.) Manny has four pieces of carpet. Each piece is in the shape of a square like the one shown:
He is going to put these four pieces together in a grid like shown:
What is the area of the space he can cover with the carpet?

$2 x^{2} y d$

