BRING YOUR TEXTBOOK!!

Warmup 8/(9 + $\mathbf{9}+$ +)

Whoops! Wednesday
Aaron and Alice are bowling. Alice's score is twice the difference of Aaron's score and 5. The sum of their scores is 320 . What is Aaron's score?

$$
\begin{aligned}
& 2(a-5)=320 \\
& 2 a-10=320 \\
& 2 a=330 \\
& a=165
\end{aligned}
$$

Find and correct the mistake in the student's work.

If you haven't taken the enrichment

 survey yet...- PLEASE remember to do so today!!! (If you can multi-task, you may do it now)
- DeBoard, Zilah
- Komisar, Jack
- Mohammad, Helen
\square Robertson, Isabelle
- Singha, Abhi
- Waterman, Jenalyse

Lischwe Age Problem, Part 2

- Nate's age + Anne's age = 67
- 26 years ago, Nate was twice as old as Anne.

Go over the quiz?

Today's Objectives

םUnderstand the similarities and differences between solving equations and inequalities
םGraph the solution set of an inequality

Add to your table of contents...

Table of Contents

Simplifying \& Interpreting Expressions p. 1 Solving Equations
p. 2

Fractions \& Story Problems
p. 3

Equations with No Solution or Infinite Solutions Inequalities
p. 4
p. 5

Inequalities

Objectives:
-Understand the differences
between equations and inequalities
-Solve inequalities
-Graph the solution set of an inequality

Fill in the blank with either < or >.

1) $10 \leq 12$
2) $-4 \geq-6$
3) $\frac{1}{4} \leq \frac{1}{3}$
4) $2^{3} \leq 3^{2}$
5) Write 4 numbers that satisfy the inequality
$x<3 . \quad-18,0,2,2.8$

Worksheet

SUPER, SUPER IMPORTANT

- It is crucial to know the difference between an equation and an inequality. Saying "one has an equal sign, one has < or >" is not enough.
\square Solution to $\mathbf{x}=\mathbf{8}$?
\square Solution to $\mathbf{x} \boldsymbol{>} \mathbf{- 4 ?}$

Differences between equations and

 inequalities
\square Discuss:

\square How many solutions do equations have? one (wually)
\square How many solutions do inequalities have? infinite!
■Inequality symbols: $<,>, \leq, \geq, \neq$

Find 3 solutions for each inequality:

$$
\begin{aligned}
& \text { 1. } x+3<12 \quad 67,8 \\
& \text { 2. } x-10 \geq 34 \quad 44,50,700 \\
& \text { 3. } \frac{x}{5} \leq 4 \quad 0,5,20 \\
& \text { 4. }-3 x>12 \quad-5,-6,-7
\end{aligned}
$$

Describe the solutions in words:

1) $x+3<12$
"Numbers that are less than 9"
2) $x-10 \geq 34$
"Numbers that are greater than or equal to 44"
3) $\frac{x}{5} \leq 4$
"Numbers that are less than or equal to 20"
4) $-3 x>12$
"Numbers that are less than -4"

Ok...how do we officially solve them?

■THREE VOLUNTEERS PLEASE!!!
\square Each one gets a whiteboard. Stand in a line in front of the class.

ㅁ First person: write "1" on the whiteboard.
\square Middle person: write "<" on the whiteboard.

- Last person: write " 2 " on the whiteboard.

1. Both people: add 5 to both sides.
2. Is the inequality sign correct?
3. Subtract 10 from both sides.
4. Is the inequality sign correct?
5. Multiply both sides by 4.
6. Is the inequality sign correct?
7. Divide both sides by -2 .
8. Is the inequality sign correct?
9. Divide both sides by 4.
10. Is the inequality sign correct?
11. Add -5 to both sides.
12. Is the inequality sign correct?
13. Multiply both sides by -10 .
14. Is the inequality sign correct?
15. Subtract -8 from both sides.
16. Is the inequality sign correct?

WHEN DO WE HAVE TO CHANGE THE DIRECTION OF THE SIGN???????

Solving Inequalities

Keep the sign the same when:

- Adding or subtracting anything on both sides
- Multiplying or dividing both sides by a positive number
Reverse the sign when:
- Multiplying or dividing both sides by a negative number

Solve and graph the solution set.

$$
\begin{aligned}
& \text { 1. } 20-\frac{3}{2} x>32 \quad x<-8 \\
& -20 \quad 2 \quad-20 \\
& \text { (-2 } \left.-\frac{3}{3}\right)-\frac{3}{2} x>12\left(-\frac{2}{3}\right) \\
& x<-8 \\
& \text { 2. } 14-(-10) \geq 6 x-4+x \\
& 4 \geq x \\
& \begin{array}{l}
24 \geq 7 x-y \\
\frac{38}{7} \geq \frac{7 x}{7} \quad 4 \geq x \text { or } x \leq 4
\end{array}
\end{aligned}
$$

Remember: Graphing Inequalities

-Graphing Inequalities

-Closed dot: \geq or \leq (means that value is a solution)
-Open dot: > or < (means that value is not a solution)

Homework

пр. 78 (7-10, 13-18)
口***Graph all solutions!!!***

- Some of the answers WILL include fractions.
口There is not a ton of room - use a separate sheet of paper if necessary!

