WARMUP I2 $(\sqrt{\sqrt{\sqrt{256}}})$

What percent of the pie has

 been eaten?http://www. estimation I 80.com/day|l3.htm|

NEW UNIT: SEQUENCES

OBJECTIVES:

- Learn about what a sequence is
- Know the two most common types of sequences
- Write a recursive rule for a sequence
- 7, 9, II, I3, I5, ...
- This is an example of a sequence.
- How many terms do you see?
- How many terms could there be?
- Which term is in the third position?
- What would the term in the $6^{\text {th }}$ position be?

SEQUENCES AND FUNCTIONS

- a sequence is a list of numbers in a specific order.
- Each element in a sequence is called aterm
- Each term nas aposition number
term in the fourth

ص,
term in the first position

DIFFERENCES BETWEEN SEQUENCES AND REGULAR FUNCTIONS

- A sequence has NO ZEROTH TERM. A sequence starts with the first term.
- This is different than functions, when we usually think of the "original value" as the value when x is 0 .
- There are no decimal term positions. You have the $1^{\text {st }}$ term, $2^{\text {nd }}$ term, $3^{\text {rd }}$ term, with nothing in between
- With functions, the "input" can be anything, including decimals
- If you were to graph a sequence (we usually don't), you would NEVER connect the points

CAN YOU FIND THE NEXT 3 TERMS?

I. $8,15,22,29, \ldots$
2. $10,20,40,80, \ldots$
3. $5,6,8, I I, I 5, \ldots$
4. 5.4, 4.2, 3, I.8, ...
5. $0, \frac{3}{4}, 1 \frac{1}{2}, 2 \frac{1}{4}, \ldots$
6. $10,5, \frac{5}{2}, \ldots$ \#1,\#4, and \#5 are called arithmetic sequences

36,43, 50 (always adding 7)
$160,320,640$ (always multiplying by 2)
20, 26, 33 (adding I,then 2, then 3, etc.)
0.6, -0.6, - I. 8 (always subtracting I.2, or adding -l.2)
$3,33 / 4,41 / 2$, (always adding $3 / 4$)
5/4, 5/8, 5/I6 (always dividing by 2, or multiplying by $1 / 2$)

2 MOST COMMONTYPES OF SEQUENCES

- Arithmetic Sequence: When the terms in the sequence have a common difference (d)
- (Basically, a sequence that is linear)
- Geometric Sequence: When the terms in the sequence have a common ratio (\mathbf{r})
- (Basically, a sequence that is exponential)
- BY THE WAY:"Arithmetic" as a noun is pronounced differently than "Arithmetic" as an adjective!

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

9, 13, I7, $21, \ldots$

Arithmetic

common difference: 4
next three terms: 25, 29, 33

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

$$
10,8,5, I, \ldots
$$

Neither; no common difference or ratio

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

7,70,700,7000, ...

```
Geometric
Common ratio \(=10\)
Next 3 terms: 70000 700000, 7000000
```

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

$$
8,2,-4,-10 \ldots
$$

[^0]Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

$$
-4,-2,1,5, \ldots
$$

Neither, no common difference or ratio

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

320, 80, 20, ...

Geometric
Common ratio $=1 / 4$
Next 3 terms: 5, 5/4, 5/I6

Determine whether the sequence appears to be an arithmetic, geometric, or neither. If arithmetic or geometric, find the next 3 terms, and write the common difference or common ratio.

$$
-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \ldots
$$

Arithmetic
common difference: $2 / 4$ or I/2
next three terms: 5/4, 7/4, 9/4

Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms.

$$
\frac{2}{3}, \frac{1}{3},-\frac{1}{3},-\frac{2}{3}, \ldots
$$

Neither, no common difference between terms

I AM THINKING OF A SEQUENCE...

-The first term is 8 .

-Can you tell me the sequence?

I AM THINKING OF A SEQUENCE...

-With each term, I am adding 4.
-Can you tell me the sequence?

I AM THINKING OF A SEQUENCE...

-The first term is 13 . 1 multiply the previous term by 2 to get the next term.

- Can you tell me the sequence?

RECURSIVE RULES

- We can precisely describe any sequence by stating the first term and describing how to get from one term to the next. This is called a recursive rule.

RECURSIVE RULES

- $10,16,22,28, \ldots$
- FIRSTTERM = 10
- ANY TERM = PREVIOUSTERM + 6

RECURSIVE RULES

-40, 60, 90, I 35, ...

- FIRST TERM = 40
- ANY TERM = PREVIOUSTERM x $\mathbf{I . 5}$

SEQUENCE NOTATION

- Things like "first term" and "previous term" are too long and wordy for mathematicians. Instead, we have a special notation for sequences, which is the letter "a" with a subscript:
- $a_{1}=l^{\text {st }}$ term
- $a_{13}=13^{\text {th }}$ term
- $a_{n}=n^{\text {th }}$ term

RECURSIVE RULES

- I 2, 20, 28, ...
- FIRSTTERM = 12
- ANYTERM = PREVIOUSTERM + 8
$-a_{1}=12 \quad$ Why do we need
$-a_{n}=a_{n-1}+8$ both parts of this?

YOU CAN ALSO DO IT THIS WAY...

- I 0, I 6, 22, 28, ...
- FIRSTTERM = 10
- NEXT TERM = CURRENTTERM + 6
$-a_{1}=10$
$-a_{n+1}=a_{n}+6$

Determine whether the sequence is arithmetic or geometric. Then write the recursive rule for the sequence.

$$
\begin{aligned}
& I 5,26,37,48, \ldots \\
& a_{1}=15 \\
& a_{n}=a_{n-1}+\| \|
\end{aligned}
$$

Determine whether the sequence is

 arithmetic or geometric. Then write the recursive rule for the sequence.$$
\begin{aligned}
& 3,|2,48,| 92, \ldots \\
& a_{1}=3 \\
& a_{n}=4 \cdot a_{n-1}
\end{aligned}
$$

ALTERNATE NOTATION FOR SEQUENCES...

- Although subscript notation is the most common way to write sequences, you can also use function notation.
$-a_{n}$ can also be writen as $f(n)$
- a_{n-1} anantobememenan $f(n-l)$
- a_{12} annabocemenem $f(12)$
- etc.

Write the recursive rule for the sequence. Use function notation!

3, 23, 43, 63, ...
f(I) $=3$;
$f(n)=f(n-I)+20$

Write the recursive rule for the sequence. Use function notation.

6, 12, 24, 48, ...
f(1) $=6$;
$f(n)=2 \bullet f(n-1)$

Write the recursive rule for the sequence.

I/2, I/8, I/32, I/I28, ...

$$
\begin{aligned}
& f(I)=\frac{1}{2} \\
& f(n)=\frac{1}{4} \bullet f(n-I)
\end{aligned}
$$

WHAT ARE THE FIRST FOUR TERMS OF THE EQUENCE DEFINED BY THE RECURSIVE RULE

$$
\begin{gathered}
a_{l}=4 \\
a_{n}=a_{n-l}+5
\end{gathered}
$$

$$
4,9,14,19
$$

WHAT ARE THE FIRST FOUR TERMS OFTHE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=5 \cdot a_{n-1}
\end{gathered}
$$

4, 20, I00, 500

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BY THE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n+1}=a_{n}+8
\end{gathered}
$$

$$
4,12,20,28
$$

WHAT ARETHE FIRST FOUR TERMS OF THE SEQUEN DEFINED BY THE RECURSIVE RULE?

$$
\begin{aligned}
a_{1} & =4 \\
a_{n+1} & =3 \cdot a_{n}
\end{aligned}
$$

$4,12,36,108$

[^0]: Arithmetic
 common difference: -6
 next three terms: - $6,-22,-28$

