Warmup $12 /$ (The first odd prime number)

(This is Week 8!)

For \#1 and \#2 on the warmup, we will be doing two oneminute challenges. For each challenge, you will be trying to come up with as many solutions to the equation as possible.

1 minute challenge

- I am going to show you an equation with TWO VARIABLES in it. (x and y)
- You will need to find as many solutions as you can. This will be an (x, y) pair that works in the equation.
- FOR EXAMPLE, IF YOUR EQUATION WAS $\mathbf{y}=3 \mathrm{x}$, you could use $(2,6)$, because if $x=2$, then $y=6$.
- MAKE A LIST of your solutions on a blank piece of paper. The person with the most in one minute wins. You must write each solution as an ordered pair.

1 minute:

1) Find as many solutions to this equation as you can. Write each solution as an (x, y) ordered pair.

$x+y=11$

1 minute:

2) Find as many solutions to this equation as you can. Write each solution as an (x, y) ordered pair.

$y=2 x-1$

Go over Equations Test

- May retake individual tasks
- Retake deadline for the FIRST equations quiz: Friday of this week
- Retake deadline for THIS equations test: Friday of next week

New Unit: Systems of

 EquationsWhat do you think a system of equations is???

Is there a solution for both equations???

$$
\begin{aligned}
& y=2 x-1 \\
& x+y=11
\end{aligned}
$$

- A system of equations is a set of more than one equation.

- To solve a system of equations, find the (x, y) pair that works in BOTH equations!!!

Do you think there is ANOTHER pair of numbers besides $(4,7)$ that works in both?

$$
\begin{aligned}
& y=2 x-1 \\
& x+y=11
\end{aligned}
$$

Remind me: what does the GRAPH of an equation like this look like?

- If both equations are linear, then they will only have ONE solution.
- This is because two lines only cross at a single point!!!

- (There are two exceptions to this rule. Can you think of them?)

Which (x, y) works for BOTH?

$$
\begin{aligned}
& x+y=9 \\
& x-y=1
\end{aligned}
$$

Which (x, y) works for BOTH?

$$
\begin{gathered}
x-y=7 \\
x y=30
\end{gathered}
$$

Which (x, y) works for BOTH?

$$
\begin{gathered}
y=2 x \\
x+y=15
\end{gathered}
$$

Which (x, y) works for BOTH?

$$
\begin{aligned}
& x+y=13 \\
& x-y=-3
\end{aligned}
$$

Which (x, y) works for BOTH?

$$
\begin{gathered}
x+y=10 \\
2 x+y=12
\end{gathered}
$$

Which (x, y) works for BOTH?

$$
\begin{gathered}
x+y=5 \\
x+y=10
\end{gathered}
$$

Which (x, y) works for BOTH?

$$
y=-\frac{1}{3} x+4
$$

$$
y=\frac{3}{2} x-7
$$

You will not always be able to just guess and check!

- In fact, guess-and-check will usually be pretty difficult
- We will be learning SEVERAL strategies for how to solve systems of equations

Homework:

- Simple Systems of Equations worksheet
- Solve using guess \& check or whatever smart strategies you can come up with !!!

Today/Tomorrow: T-Shirt Task

- In pairs, we will be looking at a real-world scenario that will be a nice entry point into systems.
- You will be writing answers to questions, making tables, and making graphs. Please divide the tasks fairly between the two of you so that you're contributing equally.
- All answers will go on the back of the graph I pass out. If you need more room, attach a separate sheet.

PLT: BEFORE YOU DO ANYTHING

- You must take BOTH surveys:
- Grade 8 SEL Survey
- $8^{\text {th }}$ Grade Enrichment Sign Up
- Both can be found at www.meigsacademicmagnet.org.
- If you do not have a device you can use to take these surveys, please borrow one from someone else so you can take it!

