

Try to figure out the rules. Write each rule in the form "Output = Input + 3 " or something similar.

1)	Input	Output	2)	Input	Output	3)	Input	Output
	9	-9		6	10		2	13
	5	-13		0	-2		5	25
	32	14		13	24		6	29
	-6	-24		30	58		7	33
	99	81		6	10		100	405
	Output $=$ Input - 18		Output $=$ Input $\bullet 2-2$				put $=$	ute4 + 5
4)	Input	Output	Output $=$ Input ${ }^{2}-$		5) The exclamation point in Ms. Niemec's problem above is actually a mathematical symbol. Based on the			
	5	15						
	7	39						
	-7	39					4! shou	be equal to?
	10	90			(And is		yone w	actually
	3	-1			knows		$!$ sign	

Go over Graphing Stories WS

Unit 1 QUIZ

- The deadline to retake is Wednesday!
- Your corrections/extra practice is due TOMORROW!
- If you are retaking the quiz on the day of the deadline, you must be done by the end of lunch. This means you probably need to start at the beginning of PLT.

Play "Guess My Rule" in pairs

- Let me know if you have nobody to join with!
- Take turns thinking of rules. You may make the rule whatever you want, but you may not use a calculator!!!

Would this be a fair rule?	
$\frac{\text { Input }}{1}$	$\underline{\text { Output }}$
2	-6
3	-3
5	2
7	18
10	42
	93

Would this be a fair rule?	
$\frac{\text { Input }}{}$	$\frac{\text { Output }}{13}$
5	13
2	13
97	13
-3.2	13
0	

Rest of today:

- We will simply be asking the question "Is this a function???"
- We will do more practice later with trying to figure out what the rule is. But for now, all we care about is if the rule is FAIR or not.

Function?

Function?

x	y
-8	16
10	-20
1	-2
4	-8
1	-2

No; the input " 5 " has more than one output.

Yes; there is a repeated input, but the output is the same.

Function?

x	y
1	24
2	9
3	-6
4	-21
5	-36

Yes; each input has only one output.

Function?

x	y
1	-2
2	-2
3	-2
4	-2
5	-2

Yes; each input has only one output. (You can have the same output for multiple inputs!)

Function?

(2, 8); (-5, 9); (7, 9); (2, -4), (7, 4)

No; the input " 2 " has more than one output.

Function?

$(1,5) ;(8,19) ;(4,11) ;(-8,-13),(1,5)$

Yes, each input has only 1 output.

Function?

Yes, each input has only 1 output.

- Mapping Diagram:

- Express the relation $(\mathbf{2}, 0),(5,9),(-1,9),(-2,16)$ as a mapping diagram.

Function?

No; the input " 6 " has more than one output.

Function?

Yes, each input has only 1 output.

IS IT A FUNCTION?

One input \rightarrow Multiple outputs $=\mathrm{BAD}$
Multiple inputs \rightarrow one output $=\mathrm{OK}$
(There are several types of mathematical rules that can give you repeated outputs. For example,
multiplying by zero then adding anything. Squaring a number. Taking the absolute value. And many, many more!)

Let's look at some graphs
now...

8 This graph is just plain wrong. How can Tom be in two places at once?

What is the input and output of this point?

Input = 8
Output =-3

If the input is 6 , what's the output?

On a graph...

- " x " is the input, and " y " is the output.

> Function?

Rules for graphs of functions

- ON A GRAPH:
- The x-value (horizontal) is the INPUT and the y-value (vertical) is the OUTPUT.
- To be a function, each x-value can only have one y-value.

Function?

