Created by Mr. Lischwe

Warmup $2 /$ (The $2^{\text {nd }}$ perfect number)

$45 x$		$11+$		$2-$	
		$24 \times$		$30 \times$	$24 \times$
$240 \times$					
			$2 \div$		$9 \times$
$11+$			6		

Quiz Tuesday

Triangle Properties

Create a flow proof for the Exterior Angle Theore


```
m\angle1+m\angle2+m\angle3-180
```

Triangle Sum Theorem

11. Find w to find the measure of the exterior angle.

$$
w=68+68
$$

$w=136$

12. Find x to find the measure of the remote interior angle.

13. Find $\mathrm{m} \angle H$.

$$
\begin{aligned}
(6 x-1)+(5 x+17) & =126 \\
x & =10
\end{aligned}
$$

$m \angle H=(6 x-1)^{\circ}=(6(10)-1)^{\circ}=59^{\circ}$
14. Determine the measure of the indicated exterior angle in the diagram.

$$
180-(3 x+4)=2 x+3 x
$$

$$
22=x
$$

$$
180-(3(22)+4)=180-(66+4)=180-70=110
$$

The measure of the indicated exterior angle is 110°.
15. Match each angle with its corresponding measure, given $m \angle 1=130^{\circ}$ and $m \angle 7=70^{\circ}$. Indicate a match by writing the letter for the angle on the line in front of the corresponding angle measure.
A. $\mathrm{m} / 2$ \qquad 50°
B. $\mathrm{m} / 3$
$\xrightarrow{B} 60^{\circ}$
C. $\mathrm{m} / 4$
D 70°
D. $\mathrm{m} / 5$
$\mathbf{E} \quad 110^{\circ}, 0$
E. $\mathrm{m} \angle 6$
C
120°

A few minutes - compare/revise answers for the "angle chasing" sheet

TABLE OF CONTENTS: $2^{\text {ND }}$ SEMESTER

Geometry Basics
Midpoint \& Distance Formulas
Reflections (Guided)
Rotations (Guided)
Symmetry Practice
Types of Angles (Guided)
Angles formed by Parallel Lines
Angle Rule CONVERSES (Guided)
Parallel \& Perpendicular Lines (Guided)
Triangle Congruence (Guided)
Isosceles \& Equilateral Triangles (guided) p. 10
(No page, see foldable!)
p. 1
p. 2
p. 3
p. 4
p. 5
p. 6
p. 7
p. 8
p. 9

Objective

Explore Properties of Isosceles and Equilateral Triangles

What is an Isosceles Triangle?

- Draw an isosceles triangle using a ruler. - MEASURE THE SIDES!
- Measure the base angles using a protractor.
\square Repeat this activity one more time.

What do you notice???

Isosceles Triangle Theorem pg. 1098

- If two sides of a triangle are congruent, then the two angles opposite the sides are congruent.
ain other words: "The Base Angles of an isosceles triangle are congruent"

Let's Prove this!

What is the converse of a theorem?

- A statement formed by interchanging what is given in a theorem and what is to be proved

Isosceles Triangle Theorem

- If
 then

Converse of the Isosceles Triangle Theorem

then

- Draw an equilateral triangle using a ruler. - MEASURE THE SIDES!
\square Measure the angles using a protractor.
\square Repeat this activity one more time.

What do you notice???

Equilateral Triangle Theorem

If a triangle is equilateral, then it is equiangular.

all angles have equal measures

Let's Prove this!

Equilateral Triangle Theorem

- If

Converse of the Equilateral Triangle Theorem

- If

then

Find $m \angle F$.

Find $m \angle G$.

$$
(x+44)^{\circ}=3 x^{\circ}
$$

Thus $\mathrm{m} \angle G=22^{\circ}+44^{\circ}=66^{\circ}$.

$$
x=22^{\circ}
$$

Find the value of \boldsymbol{x}.

$(2 x+32)^{\circ}=60^{\circ}$

$$
2 x=28
$$

$$
x=14
$$

The length of $\overline{Y X}$ is $\mathbf{2 0}$ feet.
Explain why the length of $\overline{Y Z}$ is the same.

Find the value of \boldsymbol{y}.

$$
y=18
$$

Your turn! pg. 1102 (5-8)

5. Find $\mathrm{m} \angle P$.

$$
m \angle P=m \angle Q=(3 x+3)^{\circ}
$$

$$
2(3 x+3)+(5 x-2)=180
$$

$$
x=16
$$

$$
m \angle P=(3 x+3)^{\circ}=(3(16)+3)^{\circ}=51^{\circ}
$$

6. Katie's tutorial service is going so well that she is having shirts made with the equilateral triangle emblem. She has given the t-shirt company these dimensions. What is the length of each side of the triangle in centimeters?

$$
\begin{aligned}
& \qquad \overline{A B} \cong \overline{A C} \quad \Rightarrow \quad A B=A C \\
& \frac{3}{10} y+9=\frac{4}{5} y-1 \quad \Rightarrow \quad 20=y \\
& \text { Therefore, } \frac{3}{10} y+9=\frac{3}{10}(20)+9=6+9=15 \\
& \text { The length of each side is } 15 \mathrm{~cm} .
\end{aligned}
$$

7. Discussion Consider the vertex and base angles of an isosceles triangle. Can they be right angles? Can they be obtuse? Explain.

The vertex angle of an isosceles triangle can be acute, right, or obtuse as long as its measure is less than 180°. The base angles of an isosceles triangle can only be acute, meaning they have a measurement less than 90°. because otherwise they would cause the sum of the base angles to be $\geq 180^{\circ}$ before adding in the third angle, which contradicts the Triangle Sum Theorem.
8. Essential Question Check-In Discuss how the sides of an isosceles triangle relate to its angles.

The legs of an isosceles triangle are opposite from the base angles and because the base angles are congruent, the legs are also congruent because of the Converse of the Isosceles Triangle Theorem.

Homework

- pg. 1104-1108 (4-10, 12, 13, 19, 20)]
$\square^{* * *}$ You don't need to rip this one out!!! Too many pages.***

