

Name: KFY

Jerry forgot to plug in his laptop before he went to bed. He wants to take the laptop to his friend's house with a full battery. The pictures to the right show screenshots of the battery charge indicator after he plugs in the computer at 9:11 AM.

(41%)	Sat 9:11 AM	Q +0	(0,41)
₹ (56%)	Sat 9:27 AM	Q +16	(16,96)
<u>(64%)</u>	Sat 9:36 AM	Q +25	(25,64)
(74%)	Sat 9:48 AM	Q +37	(37,74)
₹ (79%)	Sat 9:55 AM	Q +44	(44,79)
(86%)	Sat 10:08 AM	Q +5	7 (57.86)
(91%)	Sat 10:17 AM	Q +(6 (66,91)

Questions:

1) Is the correlation positive or negative? Why do you think this is?

Positive; the more time goes by, the more the laptop charges.

2) What type of correlation is represented by this situation? Estimate the value of the correlation coefficient r.

Linear correlation; strong positive (around 0.9 or so)

3) Draw a line of best fit and find the equation for it (Hint: find two points on your line).

What does the slope of the equation represent?

ope of the equation represent? The happop charges about $\frac{92-43}{64-0} = \frac{49}{64} = 0.765625$ Y=0.765625 X+43 0.77% per minute.

4) Use your equation to estimate the time when Jerry will have a fully charged laptop.

57 = 0.765625x -> X=74449

About 74.4 minutes | ≈ 10:25

5) With your calculator, perform a linear regression. When will Jerry have his laptop fully charged based on the line of best fit? V=0.75653 x + 43.6643 - 100 =0.75653x+43.6643

10:25 w 10:26 x 274.5