Need:

- NEW graphing sheet
- Marker
- Eraser
- Calculator

On your graphing sheet...

- Make a scatter plot using the following data (watch your positives and negatives):
- https://www.youtube.com/watch?v=ooDBTYahdQE
- GUESS where the line of best fit is and draw it in. Be precise and try to draw it as straight as you can.
- Line of best fit generator: http://illuminations.nctm.org/Activity.aspx?id=4186
- Also, predict what you think the correlation coefficient is. Write this somewhere on your graph (For example: $r=-0.2$)
- We are now going to use the calculator to DEFINITIVELY CALCULATE the line of best fit.

The line of best fit

- It says " m " is about 0.57
- It says " b " is about 1.97
- So our line of best fit is $\mathbf{y}=\mathbf{0 . 5 7 x} \mathbf{+ 1 . 9 7}$ (rounded)
- This is pretty tough to graph...but I will show you exactly where it is so that you can see how close you were
- Also, find the value of " r " (not r^{2}). That is the correlation coefficient.

To see the scatter plot on your calculator

- Go back into the " x " column
- Go to menu \rightarrow Data \rightarrow Quick Graph
- The " x " will be plotted, then select the y-axis and choose " y " from the list
- If you want to see a bigger version, go back to "home", then click on the bar-graph icon under "Add page to: New Document"
- Click each axis and select the appropriate variable (x and y)
- To see the line of best fit, go to menu \rightarrow analyze \rightarrow linear regression

Another one

- Make a scatter plot using the following data:
- Guess the line of best fit and the correlation coefficient
- $y=-0.36 x+1.52$ (rounded)
- $r=-0.49$

