Can you figure out the rules?

1)	Input	Outpu	2)	Input	Output	Output = \# of vowels in the input
	Garage	g		Lischwe	2	
	Baboon	Output $=2^{n d}$ to last letter of input (the "penultimate" letter)		lowa	3	
	Function			Pretzel	2	
	Kayak			Mathematics	4	
	Dinosaur	u		Equation	5	
3)	Input	Output 4)		Input	Output	Output $=$ First letter of the color of the input
	Activity	1	Output $=$ Place in alphabet of the first letter of the input	Lime	g	
	Denver	4		Stop Sign	r	
	Jupiter	10		Basketball	-	
	Zipper	26		Sky	b	
	Friends	6		Banana	y	

GOING OVER THE
 GRAPHING
 WORKSHEET...

Table of Contents
p. 1 Consecutive Sums Project
p. 2 Stacking Cups Problem
p. 3 Converting Fractions and Decimals (1.1)
p. 4 Roots (1.8 \& 1.9)
p. 5 Rational vs. Irrational (1.1)
p. 6 What is a Function?
p. 7 Function Notation
p. 8 Graphing Functions
p. 9 Analyzing Key Features of Graphs

ONE IMPORTANT THING TO NOTICE...

Did any of your graphs turn out to NOT BE FUNCTIONS?

Why do you think this happened???

Objectives:

Analyzing Key Features of Graphs

-Compare linear/nonlinear equations
-Describe important "key features" of graphs

OKAY, NOW LOOK BACK AT YOUR FUNCTION GRAPHS...

Look at the ones that are linear and the ones that are nonlinear

What do you think made them linear or nonlinear? Come up with some conjectures.

Let's explore what the graphs of different functions look

 like...https://www.desmos.com/calculator

COPY:

Linear Equations	Nonlinear Equations
No exponent on the variable!!!	Exponents other than 1
None of these other things: $\boldsymbol{\rightarrow}$	Variable inside a square roots
	Variable in a denominator
	Variable inside an absolute value

LINEAR OR NONLINEAR?

$$
f(x)=4 x+3
$$

Linear

LINEAR OR NONLINEAR?

LINEAR OR NONLINEAR?

$$
f(x)=\frac{x}{5}+4
$$

Linear

LINEAR OR
 NONLINEAR?

$$
f(x)=\frac{6}{x}-2
$$

Nonlinear

LINEAR OR

 NONLINEAR?$$
f(x)=100=x
$$

Linear

LINEAR OR

NONLINEAR?

$$
f(x)=-\frac{3}{4} x+\frac{1}{7}
$$

Linear

$$
\begin{aligned}
& \text { LINEAR OR } \\
& \text { NONLINEAR? } \\
& \qquad f(x)=x^{3}+4 x-3
\end{aligned}
$$

Nonlinear

LINEAR OR

NONLINEAR?

$$
f(x)=5 x-2 x
$$

Linear

LINEAR OR
 NONLINEAR?

$$
f(x)=4 \sqrt{x}-3
$$

Nonlinear

LINEAR OR
 NONLINEAR?

$$
\begin{gathered}
f(x)=|2 x+10| \\
\text { Nonlinear }
\end{gathered}
$$

LINEAR OR

 NONLINEAR?$$
f(x)=6
$$

Linear

LINEAR OR

NONLINEAR?

$$
f(x)=(4 x-3)^{2}
$$

Nonlinear

LINEAR OR

NONLINEAR?

$$
f(x)=2 x^{3}-\sqrt{x}+|x-4|+\frac{3}{x}
$$

LINEAR OR

 NONLINEAR?$$
\begin{gathered}
6-\frac{3}{4} x=f(x) \\
\text { Linear }
\end{gathered}
$$

LINEAR OR NONLINEAR?

$$
y=3 x+\sqrt{2}
$$

Linear

WHAT COULD BE SOME IMPORTANT THINGS ABOUT THIS GRAPH?

KEY FEATURES OF GRAPHS

Increasing: Where the y-values go up (from left to right)
Decreasing: Where the y-values go down (from left to right)
X-intercept: Where the graph crosses the x -axis Y-intercept: Where the graph crosses the y-axis Slope: How steep the graph is

KEY FEATURES?

X-intercepts: -3 and 2 Y-intercept: Increasing/Decreasing? First decreasing, then increasing

KEY FEATURES?

Increasing/decreasing?

Always increasing
X-intercept?
-8
Y-intercept?
6
Describe the slope.
The slope is not constant.
Above and beyond answer
the slope starts out very
steep, then gets gradually less steep

KEY FEATURES?

Increasing/decreasing?
Increasing, then decreasing, then increasing, then decreasing, etc X-intercept?
$-2 \pi,-\pi, 0, \pi, 2 \pi$
Y-intercept?
0
Describe the slope.
The slope is not constant.

DRAW A GRAPH WITH
 THE FOLLOWING CHARACTERISTICS:

x and y-intercepts are both zero

Always decreasing

Slope doesn't change

CHOOSE THE GRAPH THAT IS:

Decreasing, then increasing, then decreasing
Has an x -intercept of 4

DRAW A GRAPH WITH
 THE FOLLOWING CHARACTERISTICS:

Always increasing

The slope changes

IS THIS POSSIBLE?

Draw a graph that is increasing, where the x -and y -intercept

WHICH OF THESE ARE POSSIBLE?

A) A graph that is increasing only, which has an x-intercept of -4 and a y-intercept of 6 .
B) A graph that is increasing, then decreasing, has x intercepts of 5 and -5, and a y-intercept of -9.
C) A graph that is increasing, then decreasing, then increasing again, that has x-intercepts of $-8,2$, and 7 , and ay-intercept of 4.

HOMEWORK

Key Features Half-Sheet

