SEL LESSON:

"Learn Like a Jungle Tiger"

PLAN FOR THIS WEEK

Today: More linear/nonlinear
Tomorrow: Review Functions
Wednesday: Functions Quiz

Thursday/Friday: Start Linear Functions Unit

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.
- Outputs increase by $4 \rightarrow$ Rule has a " $4 x$ "
- Outputs decrease by $2 \rightarrow$ Rule has a" $-2 x$ "
- NOTE:This only works if your inputs are consecutive numbers.

So, how does this help me with
"guess my rule???"

- Guess consecutive numbers!!!

Can you get these rules???

I)

x	$a(x)$	
1	4	$a(x)=3 x+1$
2	7	
3	10	
4	13	
5	16	

3)

x	$c(x)$
-2	-7
-1	-5
0	-3
1	-1
2	1

$c(x)=2 x-$

2) $x \quad b(x)$

$b(x)=5 x-10$ | 25 |
| :--- |
| 30 | | 4) | x | $d(x)$ |
| :--- | :--- | :--- |
| 0 | 10 | |
| | $d(x)=-4 x+10$ | |
| 1 | 6 | |
| 2 | 2 | |
| 3 | -2 | |
| 4 | -6 | |

One more...

X	f(x)	- The "trick" does not work here, because the outputs do not increase by a constant amount.
1	3	
2	6	
3	11	- Tables like this have different types of equations that are NOT "times something plus or minus something"
4	18	
5	27	
		- Let's investigate a little further...

NOTICE:

- \#3 had a " $\frac{1}{2} x$ " in the rule. And the inputs increase by $1 / 2$.
- \#5 had a "-3x" in the rule. And the inputs decrease by -3 .

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.

Outputs increase by $4 \rightarrow$ Rule has a " 4 x "
Outputs decrease by $2 \rightarrow$ Rule has a " $-2 x$ "

- NOTE:This only works if your inputs are consecutive numbers.
- ***If this happens, your graph will be a straight line!!!***

Look at the rest of the graphs...

- Look at the graphs that turned out to be
- Let's explore what the graphs of straight lines, and the ones that were different functions look like... NOT straight lines.
- What was different about the equations that were not linear?
- What was different about the numbers in the table?

Linear or Nonlinear?

$$
f(x)=4 x+3
$$

Linear

Linear or Nonlinear?

$$
f(x)=\frac{x}{5}+4
$$

IMPORTANT:

- Diagonal lines ARE considered "straight lines!!!"
- Straight:

- Also straight:

Linear or Nonlinear?

$$
\begin{gathered}
f(x)=x^{2}-4 \\
\text { Nonlinear }
\end{gathered}
$$

Linear or Nonlinear?

$$
f(x)=\frac{6}{x}-2
$$

Nonlinear

Linear or Nonlinear?

$$
f(x)=x^{3}+4 x-3
$$

Linear or Nonlinear?

$$
f(x)=100-x
$$

Linear

Linear or Nonlinear?

$$
f(x)=-\frac{3}{4} x+\frac{1}{7}
$$

Linear

Linear or Nonlinear?

$$
f(x)=4 \sqrt{x}-3
$$

Nonlinear

Linear or Nonlinear?

$$
f(x)=|2 x+10|
$$

Nonlinear

Linear or Nonlinear?

$$
f(x)=6
$$

Linear

Linear or Nonlinear?

$$
\begin{gathered}
6-\frac{3}{4} x=f(x) \\
\text { Linear }
\end{gathered}
$$

Linear or Nonlinear?

$$
f(x)=(4 x-3)^{2}
$$

Nonlinear

Linear or Nonlinear?

$$
f(x)=2 x^{3}-\sqrt{x}+|x-4|+\frac{3}{x}
$$

Nonlinear

Linear or Nonlinear?

$$
y=3 x+\sqrt{2}
$$

Linear or Nonlinear?

$$
y=x(x-4)
$$

Nonlinear
(it will be $y=x^{2}-4 x$)

Summarizing everything so far...

- Any equation with something like a " $5 x$ " will have outputs that increase by 5 .
- This will also cause the graph to be a straight line (linear).
- Things like exponents, square roots, and absolute value make the outputs NOT have a constant increase.
- These graphs will NOT be a straight line.

KEY FEATURES OF GRAPHS

Increasing: Where the y-values go up (from left to right)
Decreasing: Where the y-values go down (from left to right)
X-intercept: Where the graph crosses the x-axis
Y-intercept: Where the graph crosses the y-axis
Slope: How steep the graph is
ALWAYS READ A GRAPH FROM LEFT TO RIGHT!!!

KEY FEATURES?

KEY FEATURES?

Increasing/decreasing?
Always increasing
X-intercept?
-8
Y-intercept?
6
Describe the slope
The slope is not constant.
Above and beyond answer:
the slope starts out very
steep, then gets gradually less steep

KEY FEATURES?

Increasing/decreasing?
Increasing, then decreasing, then increasing, then decreasing, etc. X-intercept?
$-2 \pi,-\pi, 0, \pi, 2 \pi$
Y-intercept?
0
Describe the slope.
The slope is not constant.

CHOOSE THE GRAPH THAT IS:

Decreasing, then increasing, then decreasing
Has an x-intercept of 4

DRAW A GRAPH WITH
THE FOLLOWING
CHARACTERISTICS:
x and y-intercepts are both zero
Always decreasing
Slope doesn't change

DRAW A GRAPH WITH
 THE FOLLOWING CHARACTERISTICS:

Always increasing

The slope changes

IS THIS POSSIBLE?

Draw a graph that is increasing, where the x -and y -intercept are both 5 .

To connect these two points,

WHICH OF THESE ARE POSSIBLE?

A) A graph that is increasing only, which has an x-intercept of -4 and a y-intercept of 6 .
B) A graph that is increasing, then decreasing, has x intercepts of 5 and -5, and a y-intercept of -9.
C) A graph that is increasing, then decreasing, then increasing again, that has x-intercepts of $-8,2$, and 7 , and ay-intercept of 4.
D) A graph that is decreasing, then increasing, that does not have an x-intercept.

All are possible except (B)

HOMEWORK: KEY

FEATURES WORKSHEET

