Standard Form	Slope-Intercept Form	Point-Slope Form
$A x+B y=C$	$y=m x+b$	$y-y_{1}=m\left(x-x_{1}\right)$
-Easiest way to graph: - substitute 0 for x, find the y-intercept - substitute 0 for y, find the x-intercept - plot these points and draw the line through them	-Easiest way to graph: - Plot the y-intercept (b) - Write the slope (m) as a fraction. Use "change in $y /$ change in x " to get more points on your line	-Easiest way to graph: - Find the point $\left(x_{1}, y_{1}\right)$, and plot it - Write the slope (m) as a fraction. Use "change in $y /$ change in x " to get more points on your line

Graph each equation. Use each coordinate plane for two graphs.

1) $y=\frac{1}{5} x+8$
2) $y-8=-\frac{1}{4}(x-2)$
3) $y+7=\frac{4}{3}(x-3)$
4) $2 x-5 y=10$
5) $2 y=-x$

6) Which form of equation do you like the best? Why? Which form do you like the least? Why?

7)

a. Use point " A " to write the equation of the line in point-slope form.
b. Solve your equation from part a for y to put it in slope-intercept form.
c. Use point "B" to write the equation of the line in point-slope form.
d. Solve your equation from part c for y to put it in slope-intercept form.
e. Are your answers from part b and part d equivalent? Why do you think this is?

Write the equation of the line in slope-intercept form OR point-slope form.

15) A roller skating rink offers a special rate for birthday parties. On the same day, a party for 10 skaters costs $\$ 107$ and a party for 15 skaters costs $\$ 137$. Write an equation in point-slope form. How much would a party for 12 skaters cost?

