

RULES:

Every team does every problem.

Answers MUST go on your own paper. The group answer goes on the whiteboard.

I will give a 20 second timer. Your group's answer MUST go up when the timer goes off!

Round 2 <u>Final</u> Scores							
Slope	Graphing y = mx + b	What does it MEAN???	Rate of Change	Compare the lines			
<u>\$100</u>	<u>\$100</u>	<u>\$100</u>	<u>\$100</u>	<u>\$100</u>			
<u>\$200</u>	<u>\$200</u>	<u>\$200</u>	<u>\$200</u>	<u>\$200</u>			
<u>\$300</u>	<u>\$300</u>	<u>\$300</u>	<u>\$300</u>	<u>\$300</u>			

\$100

Find the slope both ways: by graphing them AND by using the formula. Show your work for both methods. (That means draw the points and the triangle!)

(-1, 8) and (2, 7)

Scores

<u>\$200</u>

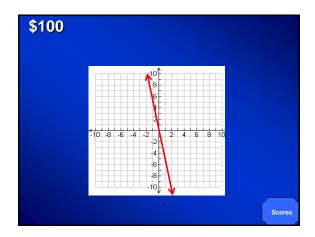
Solve WITHOUT a graph: Line M goes through (3, 6) and (4, 2), and Line N goes through (-1, 3) and (1, -2). Which line is <u>steeper</u>?

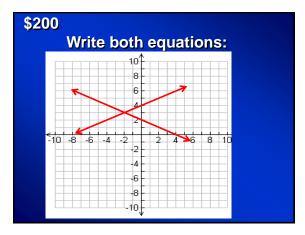
<u>\$200</u>

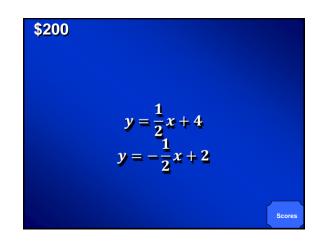
Slope of line M: -4 Slope of line N: -5/2 or -2.5 Line M is steeper

\$300

\$100


The slope between point A and (2, 3) is 4. Give three different possibilities for point A.


\$300


(3, 7); (4, 11); (1, -1); (0, -5); (-1, -9)

Graph the equation:

y = -5x

\$300

Find the equation of the line that goes through the points (2, 1) and (3, -1)

\$300

y = -2x + 5

(Easiest method is to graph both points, then find the slope and the y-intercept)

\$100

Patricia's parents kept track of her height from year to year. If you made a graph of this data, should you connect the points? Why or why not?

5	20
•	38
6	40
7	42
8	44
9	46

\$100

Yes; the numbers in between the values in the table make sense. She doesn't instantly go from 38 to 40 inches! In part of a year she grows part of the 2 inches.

Scores

Score

<u>\$200</u>

The Brown family just got a new puppy. If x is the age of the dog in years, then the weight (in pounds) of the dog y can be modeled by the equation y = 2x + 5.

- a) What is the slope, and what does it represent in terms of the situation?
- b) What is the y-intercept, and what does it represent in terms of the situation?

<u>\$200</u>

Slope = 2; the dog is growing 2 pounds per year

Y-intercept = 5; the dog was originally 5 pounds

\$300

Rick and Carl are going on a road trip. The graph shows the distance <u>remaining</u> after x hours.

a) Write an equation in slope-intercept form.

-1

b) Say what the slope represents in terms of the situation.

 $2 \frac{3}{\text{Time (in h)}} 4$

X

6

5

\$300

a) y = -60x + 240

b) Each hour, their distance remaining goes down by 60. (In other words, they are driving 60 miles per hour)

\$100

Is this a constant rate of change? Show your work.

x	у
0	4
2	20
4	36
8	60
9	68

\$100

No – the rate of change for the interval from 4 – 8 is only 6, the rate of change for the other intervals is 8.

Score

Scores

<u>\$200</u>

Melinda is reading a book. At 2:05, she is on page 143. At 2:23, she is on page 152. If she keeps reading at this pace, what page will she be on at 2:37?

\$200

Page 159 (She is reading ½ a page every minute)

\$300

Joey bought a plant. "x" represents is the number of weeks since Joey bought it and "y" represents the plant's height in inches. Assume the plant grows at a constant rate. How fast is the plant growing, and how tall was the plant when he bought it?

X	У	
2	8	
5	12.5	
8	17	
11	21.5	
14	26	

\$300

1.5 inches per week; originally 5 inches tall

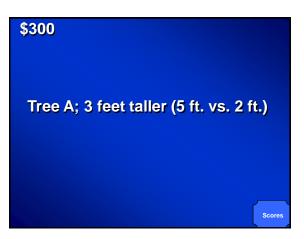
\$100

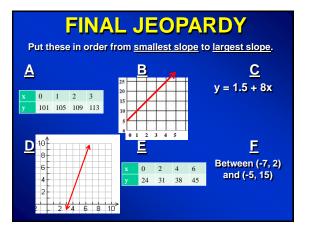
Phil has \$200 already and begins a new job where he earns \$12 per hour. The amount of money Jill has after working x hours is represented by the equation y = 15x + 100. Who will have more money after working a 40 hour week?

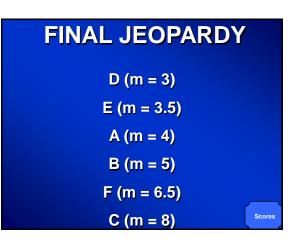
\$100

Jill (she will have \$700; Phil will only have \$680)

\$200				
John and Paul each had a big math				
assignment to do. The number of				
problems John had left is				
represented by the equation $y = -4x$	÷			
50, where x represents the number of				
minutes he has been working. The				
number of problems Paul has left is				
given in the table. Who was working				
faster?				


# of minutes	0	2	5	7	11	
# problems left	60	54	45	39	27	


<u>\$200</u>


John (4 problems per minutes; Paul only does 3 problems per minute)

\$300

Tree A was 25 feet tall 5 years after it was planted. It was 29 feet tall 6 years after it was planted. Tree B was 32 feet tall 5 years after it was planted, and 38 feet tall 6 years after it was planted. Which tree was <u>taller</u> when it was planted, and how much taller was it?

